
PHYSICAL REVIEW A 106, 013707 (2022)

Steady-state quantum Zeno effect of driven-dissipative bosons with dynamical mean-field theory
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We study a driven-dissipative Bose-Hubbard model in the presence of two-particle losses and an incoherent
single-particle drive on each lattice site, leading to a finite-density stationary state. Using dynamical mean-
field theory (DMFT) and an impurity solver based on exact diagonalization of the associated Lindbladian, we
investigate the regime of strong two-particle losses. Here a stationary-state quantum Zeno effect emerges, as can
be seen in the on-site occupation and spectral function. We show that DMFT captures this effect through its
self-consistent bath. We show that, in the deep Zeno regime, the bath structure simplifies, with the occupation
of all bath sites except one becoming exponentially suppressed. As a result, an effective dissipative hard-core
Bose-Hubbard dimer model emerges, where the auxiliary bath site has single-particle dissipation controlled by
the Zeno dissipative scale.
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I. INTRODUCTION

A variety of experimental platforms at the interface be-
tween atomic physics, quantum optics, and solid state can be
theoretically described as open Markovian many-body quan-
tum systems, where coherent quantum dynamics competes
with dissipation arising from coupling to external environ-
ments [1–8]. In this context, the density matrix of the system
evolves according to a many-body Lindblad master equa-
tion [9], where dissipative processes are described by a set
of jump operators. For bosonic or fermionic quantum par-
ticles, these can model both single-particle processes, such
as pump and losses, as well as correlated effects, such as
heating due to stimulated emission [10–12] or multiparticle
losses [13–15]. The latter, in particular, have been imple-
mented both with ultracold atoms in optical lattices as well as
with superconducting circuits [16]. In the first case, this has
led to the observation of the celebrated quantum Zeno effect
(QZE) [17,18], where the effective dissipation decreases as
the bare dissipation is increased [13,19–23]. In recent years,
the interest around these many-body versions of the QZE has
grown [24–33].

From a theoretical perspective, the study of open quantum
many-body systems is particularly challenging both numeri-
cally, due to the severe scaling of the Hilbert space and the
need of dealing with density matrices, as well as analytically,
where the combination of interactions and nonequilibrium
effects limits the applicability of standard tools of many-body
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physics. As such, several techniques have been recently devel-
oped to solve these problems [34–39]. A powerful approach to
equilibrium and out-of-equilibrium correlated quantum sys-
tems is the dynamical mean-field theory (DMFT) [40–42],
which maps the lattice many-body problem onto a quantum
impurity model subject to a self-consistent dynamical mean
field. Dynamical mean-field theory has been applied to a
variety of nonequilibrium problems [43,44], and it has been
recently extended to open bosonic quantum systems described
by a Lindblad master equation by employing a noncrossing
approximation (NCA) scheme for the solution of the asso-
ciated impurity problem [32]. In order to expand the scope
of DMFT applications to Lindblad problems, it is therefore
important to develop and enlarge the set of methods that can
be used to solve impurity models in the presence of both
Markovian and non-Markovian baths.

With this motivation, in this work we develop a Lindblad
exact diagonalization (ED) impurity solver for DMFT stud-
ies of open quantum many-body systems. As we are going
to discuss more in detail, this method, when compared to
NCA, introduces a discretization of the DMFT self-consistent
bath into a finite number of sites while treating the system-
bath coupling exactly, rather than perturbatively as in NCA.
ED impurity solvers have a long and successful tradition in
equilibrium DMFT studies [40] and have also been used in
nonequilibrium applications, for example, in transport prob-
lems [43,45].

As an application of our DMFT-ED approach, we study a
driven-dissipative Bose-Hubbard (BH) model in the presence
of strongly correlated losses, relevant for the quantum Zeno
physics. Driven and dissipative generalizations of the Bose-
Hubbard model have received significant attention in recent
years, in particular for what concerns the coherently driven
setting [46], the role of incoherent driving [47,48] and non-
Markovian dissipation [49], or the role of two-particle losses
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leading to a decay towards the zero-density limit [13,25]. Here
we focus on the finite-density stationary state obtained by bal-
ancing the two-particle losses with a single-particle incoherent
drive, as done in Ref. [32].

We show that our DMFT-ED approach recovers the qual-
itative features of the QZE as captured by the NCA impurity
solver, and provides new insights on the problem that could
not be obtained by other methods. In particular, we show that
key signatures of the QZE also appear in the self-consistent
DMFT bath, e.g., in its effective dissipation. Furthermore, we
show that, deep into the Zeno regime, the auxiliary bosonic
Anderson impurity model reduces to a much simpler BH
dimer problem [50], where one of the two sites represents the
rest of the system.

This paper is organized as follows. In Sec. II we introduce
the driven-dissipative BH model. In Sec. III we discuss the
DMFT approach to Markovian quantum many-body systems,
and we present an impurity solver based on exact diagonaliza-
tion of the associated Linbdlad problem. In Sec. IV we present
our DMFT results for the driven-dissipative BH model with
strong two-particle losses, after a brief review of the quantum
Zeno regime of this model in Sec. IV A. Finally, Sec. V is
devoted to conclusions.

II. DRIVEN-DISSIPATIVE BOSE-HUBBARD MODEL

We consider a lattice model of bosonic interacting quan-
tum particles, described by the Bose-Hubbard (BH) model,
coupled to local Markovian environments which induce dis-
sipative incoherent processes on the system. As mentioned in
the introduction, this model can be relevant both for ultracold
atomic gases, where particles describe bosonic atoms in opti-
cal lattices, as well as for arrays of superconducting circuits,
where the basic degrees of freedoms are microwave photonic
excitations. In the following, we will refer to them generically
as bosonic degrees of freedom.

The full evolution of the system density matrix is described
by a many-body Lindblad master equation of the form

d

dt
ρ̂BH = −i

[
ĤBH, ρ̂BH

] + ˆ̂LBH
D ρ̂BH, (1)

where the first term describes the Hamiltonian evolution and
the second one accounts for drive and dissipation. For a BH
model, the Hamiltonian can be written as a local term diagonal
in the occupation basis n̂r = â†

r âr, plus a tunneling contribu-
tion:

ĤBH =
∑

r

Ĥloc(n̂r ) − J

z

∑
〈r, r′〉

â†
r âr′ , (2)

where Ĥloc(n̂r ) = ω0n̂r + Un̂2
r , ω0 is a local energy term (the

chemical potential for the atoms or the cavity frequency in
the cQED context), U is the strength of the interaction, z
is the number of nearest neighbors and J/z is the tunneling
amplitude among any two of the nearest neighbors indicated
by 〈r, r′〉 in the sum.

In this work, we assume the dissipation is written as a sum
of local terms,

ˆ̂LBH
D ρ̂BH =

∑
αr

(
L̂αrρ̂

BHL̂†
αr − 1

2

{
L̂†

αrL̂αr, ρ̂
BH

})
, (3)

where we allow for two (labeled by α = 1, 2) different dis-
sipative processes describing respectively a single-particle
incoherent drive with amplitude P1, giving rise to a jump
operator of the form

L̂1r = √
P1â†

r, (4)

and two-particle losses (or gain saturation in the semiclassical
limit) with amplitude �2, leading to a jump operator of the
form

L̂2r =
√

�2ârâr. (5)

The resulting driven-dissipative BH model was studied in
the absence of drive in Refs. [13,25], while the driven case,
leading to a finite-density stationary state, was considered in
Ref. [32]. The latter is the regime that we will focus on in this
work. In the next section we introduce the method we use in
our investigation, and we discuss the main results in Sec. IV.

III. DYNAMICAL MEAN-FIELD THEORY
FOR MARKOVIAN BOSONS

In this section, we describe the DMFT approach to driven-
dissipative bosons, including the mapping onto a Markovian
quantum impurity model and the exact-diagonalization impu-
rity solver that we developed to tackle this problem. Though
we specifically refer to the model introduced in Sec. II as
a common thread, the resulting DMFT-ED approach can
be readily generalized to different kinds of jump operators
or local Hamiltonians. Special care would be needed, how-
ever, in the presence of coherent driving fields or for large
enough hopping between bosons, favoring the development
of a nonequilibrium condensate with a finite value of the local
bosonic field. Since we will not focus on these regimes, we
will assume the bosons to remain incoherent. For a more gen-
eral treatment including symmetry-broken phases, we refer
the reader to Refs. [32,51]. Finally, since the DMFT approach
is formulated for stationary states, we do not discuss any
transient effect.

A. DMFT mapping onto a Markovian quantum impurity model

In this section we provide the basic ideas of DMFT for
open quantum systems described by a Lindblad master equa-
tion of the form given in Sec. II, focusing on the physical
interpretation, while referring to Ref. [32] for further details.

Dynamical mean-field theory [40] realizes a quantum ver-
sion of the mean-field theory, which becomes exact in the
limit of large lattice coordination number or dimensionality.
In our implementation, the many-body Lindblad problem in
Eqs. (2) and (3) is mapped onto an auxiliary impurity model
characterized by a single site, called the impurity, with the
same local Hamiltonian Ĥloc(n̂) and local jump operators L̂α

of the original lattice problem1 [see Eqs. (2), (4), and (5)],
embedded into a linear non-Markovian quantum bath. The
impurity site is representative of an arbitrary site of the origi-

1Since we now have a single site rather than a lattice, we dropped
the subscript r.
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FIG. 1. Sketch of the DMFT technique. We start from a translationally invariant lattice problem, in which each site has nonlinearities, e.g.,
a Kerr nonlinearity U and two-particle losses �2. The lattice sketched here has a nearest-neighbor hopping strength J/z, where z is the lattice
coordination number. Since the lattice is translationally invariant, we focus on a single site, marked here in red; at this point, the original lattice
problem can be seen as the problem of a single site embedded in some effective bath � generated by its interaction with all the other lattice
sites. The DMFT technique provides an equation that mathematically connects such bath to the original lattice problem, by discarding spatial
correlations in the lattice self-energy �k. This connection is discussed in Sec. III A.

nal lattice, while the bath describes effectively the interaction
of the site with the rest of the lattice.

This idea is mathematically formulated in terms of single-
particle Green’s functions which, due to the nonequilibrium
nature of our problem, are expressed in the Keldysh formal-
ism as 2 × 2 matrices with only two nontrivial components,
called the retarded and the Keldysh components, respectively,
marked by superscripts R and K in the following [52]. As
a matter of fact, the steady-state lattice Green’s function at
momentum k has the following matrix structure:

Gk(ω) =
(

GK
k (ω) GR

k (ω)

GA
k (ω) 0

)
, (6)

where causality implies that the advanced component GA
k is

related to the retarded component via GA
k = (GR

k )†, while the
Keldysh component is anti-Hermitian as a consequence of its
nonequilibrium nature: GK

k = −(GK
k )†.

The key quantity is the impurity Green’s function Gimp:

G−1
imp(ω) = g−1

0,imp(ω) − �(ω) − �imp(ω). (7)

In the expression above, g0,imp is the trivial Green’s function
of a noninteracting (U = �2 = 0, marked by the subscript 0)
impurity site when disconnected (marked by the lowercase
g) from the bath. Its explicit expression, while not needed
here, can be read off from Eqs. (14) and (15) in the limit of
a single bath site and in the absence of any single-particle
loss. The coupling between the impurity site and the auxiliary
bath is instead encoded into �, called the bath hybridization
function, which is known analytically, while the self-energy
�imp encodes all the nonlinearities resulting both from local
processes (U, �2) as well as from the coupling between the
impurity and the auxiliary bath.

The DMFT mapping is enforced by identifying the impu-
rity Green’s function in Eq. (7) with the local Green’s function
of the lattice many-body problem. Namely, if we write the

local part of the lattice Green’s function

Gloc(ω) =
∑

k

[
G−1

0,k(ω) − �k(ω)
]−1

, (8)

where G0,k is the k-dependent noninteracting (U = �2 = 0)
Green’s function of the lattice and �k is its k-dependent lattice
self-energy, within DMFT we have

Gloc(ω) = Gimp(ω) and �k(ω) = �imp(ω), (9)

i.e., the lattice self-energy becomes k-independent and equal
to the impurity self-energy, and the impurity Green’s function
matches the local Green’s function of the lattice; see the
sketch in Fig. 1.

The core of an actual DMFT calculation is the evaluation of
Gimp(ω) or equivalently �imp(ω), which requires some numer-
ical or analytical method which is usually called an impurity
solver. Enforcing the first condition of (9) implies that the so-
lution must be self-consistent, since the hybridization function
has to be adjusted in order to satisfy the DMFT condition. As
a matter of fact, this is realized by an iterative self-consistent
loop that we outline in Sec. III together with our implemen-
tation. Note that, in a nonequilibrium setting, the retarded
and Keldysh components are not necessarily related by the
fluctuation-dissipation theorem; therefore, the consistency of
the DMFT mapping is ensured by imposing Eq. (9) for both
the retarded and the Keldysh components.

The self-consistent solution of the quantum impurity model
is the main technical challenge behind any DMFT ap-
proach. This is particularly true in the case of open quantum
many-body systems, where the resulting impurity model in
Eq. (7) contains interactions, nonequilibrium effects due to
the local jump operators and the coupling to a large frequency-
dependent bath. Below we present our implementation of an
impurity solver for DMFT based on exact diagonalization of
the associated Lindblad superoperator.
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B. Lindblad representation of the DMFT bath
and exact diagonalization

In order to solve the effective impurity model using an
exact-diagonalization solver, we have to represent the non-
Markovian bath as a finite (and numerically affordable)
matrix. For equilibrium DMFT problems, involving either
fermions or bosons, this can be readily done by introducing
a set of noninteracting (U = 0) auxiliary sites whose ener-
gies and couplings with the impurity site are chosen in order
to reproduce the spectral properties of the bath as well as
possible [40].

For generic out-of-equilibrium problems, however, one
needs to take into account not only the spectrum of the bath
but also its occupation, since the FDT does not hold a priori.
The occupation of the auxiliary sites can be controlled by pro-
viding them with dissipative processes that exchange single
particles between some Markovian reservoirs and the auxil-
iary sites themselves, at rates to be determined so to reproduce
the occupation properties of the bath; these are precisely the
kind of dissipative processes described by a Lindblad equa-
tion with single-particle jump operators. This argument was
used in Refs. [43,45], which studied steady-state transport
in a correlated electronic system with DMFT, to suggest a
Lindblad representation of the nonequilibrium DMFT bath.
We can therefore follow this approach, with the additional
difference that here we also have driving and dissipation on
the impurity site and that we consider a bosonic version of the
problem.

We start by writing down an effective bosonic Anderson
impurity model (AIM) whose dynamics is described by a
Lindblad master equation

d

dt
ρ̂ = ˆ̂Lρ̂ = ˆ̂LH ρ̂ + ˆ̂LDρ̂, (10)

where

ˆ̂LH ρ̂ = −i
[
Ĥ , ρ̂

]
(11)

is the coherent part of the evolution with a Hamiltonian

Ĥ = ω0â†â + Uâ†ââ†â

+
NB∑

n=1

(
ωnb̂†

nb̂n + νnb̂†
nâ + ν∗

n â†b̂n
)

(12)

describing an interacting bosonic impurity, with creation (an-
nihilation) operator â† (â), linearly coupled to a free bosonic
bath with energies ωn, creation (annihilation) operators b̂†

n

(b̂n) and coupling strengths to the impurity νn, which in the
following we take to be real (νn = ν∗

n ).

For what concerns the Lindblad dissipator ˆ̂LD, we note that
there is a certain freedom in the choice of the jump operators
of the bath. In fact, since the auxiliary cavities are a mere
fitting tool, any linear combination of {b̂†

n} (or {b̂n}) which
is consistent with the properties of the Lindblad equation is
still a valid jump operator. Equivalently, modulo a unitary
transformation, we can instead allow for off-diagonal Lind-
blad couplings among fixed jump operators {b̂†

n} (or {b̂n}), so
that the Lindblad dissipator can be generically written as (see

FIG. 2. Sketch of a nonequilibrium AIM used to model a single
driven-dissipative lattice site plus effective bath in DMFT. The im-
purity (central red site) is the only site having nonlinearities, and it
is connected to the auxiliary bath sites via some hopping amplitudes
νn, where n = 1, . . . , NN indexes the bath sites. The bath sites have
energies ωn and are connected to a completely full Markovian envi-
ronment (dark green blob on the left), which provides single-particle
pumping, and to a completely empty Markovian environment (light
green blob on the right), which provides single-particle losses. The
connection is visualized in terms of links corresponding to the Lind-
blad coefficients, with P1mn and �1mn representing the coefficients
matrices of the single-particle pump and loss processes, respectively.
The diagonal elements of the coefficient matrices correspond to solid
lines, and the off-diagonal elements to dashed lines. An analogous
AIM was used in Refs. [43,45] to map a Hermitian lattice model in
the context of nonequilibrium fermionic DMFT.

also the sketch in Fig. 2)

ˆ̂LDρ̂ = 2�2

(
ââρ̂â†â† − 1

2

{
â†â†ââ, ρ̂

})
+ 2P1

(
â†ρ̂â − 1

2

{
ââ†, ρ̂

})

+ 2
NB∑

n,m=1

[
�1mn

(
b̂nρ̂b̂†

m − 1

2

{
b̂†

mb̂n, ρ̂
})

+ P1mn

(
b̂†

mρ̂b̂n − 1

2

{
b̂nb̂†

m, ρ̂
})]

. (13)

In this expression we see both dissipative processes for the
impurity, inherited from the local jump operators (4) and (5)
of the original lattice model, as well as single-particle drive
and losses for the auxiliary bath sites, parametrized by the
coefficients �1mn and P1mn, with n, m = 1, . . . , NB.

We emphasize that the impurity parameters in the model,
namely, the local frequency ω0, the interaction U , and the
rate of single-particle drive P1 and two-particle losses �2,
are identical to those used in Eq. (3) for a generic lattice
site, by construction of the DMFT mapping. On the other
hand, the parameters that characterize the auxiliary sites and
their coupling to the impurity, as well as their dissipation, are
chosen in such a way to represent the DMFT bath.

In particular, for the diagonal Lindblad couplings we
employ in the numerical calculations, i.e., for �1nm =
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�1nnδnm and P1nm = P1nnδnm, with n, m = 1, . . . , NB, and upon
integrating the degrees of freedom of the bath, we obtain the
following expressions for the retarded and Keldysh compo-
nents of the bath hybridization function � appearing in Eq. (7)
[53]:

�R(ω) =
NB∑

n=1

ν2
n

1

ω − ωn + i(�1nn − P1nn)
(14)

and

�K (ω) = −2i
NB∑

n=1

ν2
n

�1nn + P1nn

(ω − ωn)2 + (�1nn − P1nn)2
, (15)

representing respectively the spectral function and the occupa-
tion function of the bath. Note in particular that their general
structure is that of a weighted sum of Lorentzians; each auxil-
iary site contributes a single Lorentzian in each component of
�, centered at the site bare frequency ωn and with a HWHM
equal to the bare effective loss rate �1nn − P1nn at that site.

Having a discretized representation of the DMFT bath, we
can finally solve the AIM described by Eq. (10) in order to
numerically obtain the impurity Green’s function Gimp, whose
retarded and Keldysh components are, respectively,

GR
imp(ω) = −i

∫
dt eiωtθ (t )

〈[
â(t ), â†(0)

]〉
, (16)

GK
imp(ω) = −i

∫
dt eiωt

〈{
â(t ), â†(0)

}〉
. (17)

As illustrated in detail in the Appendix, our impurity solver is
based on an exact-diagonalization scheme. The starting point
is the vectorization of the Lindblad equation, in which the den-

sity matrix ρ̂ (the Lindbladian superoperator ˆ̂L) is represented
as a vector |ρ〉 (a matrix L̂) in Fock space:

d

dt
ρ̂ = ˆ̂Lρ̂ �⇒ d

dt
|ρ〉 = L̂ |ρ〉 . (18)

In this representation, L̂ is a general (i.e. nonsymmetric)
complex-valued matrix; therefore, it is necessary to perform a
two-sided diagonalization that yields both left and right eigen-
vectors, respectively called 〈lα| and |rα〉, as well as complex
eigenvalues Lα . The retarded and Keldysh components of the
impurity Green’s function, Eqs. (16) and (17), can then be
expressed as a function of the eigenvectors and eigenvalues
resulting from the diagonalization of L̂; see Eqs. (A9) and
(A10) and the Appendix for further details.

C. The DMFT-ED loop

Having described the DMFT mapping in Sec. III A and our
specific discrete representation of the bath in Sec. III B, we
can now conclude our overview of the DMFT approach by
discussing the full DMFT loop, including the self-consistency
condition.

As already noted in Sec. III A, the DMFT mapping is
obtained by enforcing the equalities (9). These, in practice,
with our discretized representation of the DMFT bath, are
self-consistently satisfied by performing the following DMFT
loop:

(1) Initial guess.

Start from a guess for the bath parameters ωn, νn, �1nn,
and P1nn, with n = 1, . . . , NB, which corresponds to
a guess for the bath hybridization functions �R/K (ω)
given by Eqs. (14) and (15).

(2) From � to Gimp.
Given the bath hybridization functions �R/K , corre-
sponding to a set of bath parameters for the AIM,
obtain the impurity Green’s functions GR/K

imp by di-
agonalizing the AIM via ED; see the Appendix and
Eqs. (A9) and (A10).

(3) From Gimp to �(new).
Given GR/K

imp , calculate a new bath hybridization func-

tion �(new). This is the step that involves the original
lattice, i.e., the step in which we actually enforce the
DMFT equalities (9).

(a) Obtain the impurity self-energy as �imp =
g−1

0,imp − � − G−1
imp.

(b) Perform the DMFT approximation on the self-
energy: �k = �imp.

(c) Compute the local lattice Green’s function Gloc

via Eq. (8).
(d) Impose the DMFT condition to get a new impu-

rity Green’s function: G(new)
imp = Gloc.

(e) Numerically compute the new bath hybridization
function as �(new) = g−1

0,imp − (G(new)
imp )−1−

�imp.
(4) Fit of �(new).

Find new bath parameters such that the bath hybridiza-
tion functions computed via Eqs. (14) and (15) are as
close as possible to the given numerical �(new). This is
done, as we will see, via a fitting procedure that min-
imizes a suitable distance between the hybridization
functions.

(5) Convergence test.
If the distance between the new bath hybridization
functions and the former ones is less than the specified
tolerance, i.e., if ||�(new) − �|| < δ�, stop. Otherwise,
set � = �(new), go back to step 2, and iterate until
convergence.

In some cases, step 3 involving lattice quantities can be
greatly simplified. On a Bethe lattice, in particular, the self-
consistency relation simply reads [40,51]

� = J2

z
· Gimp. (19)

The last point to address is how we perform the fitting in
step 4. First, in analogy with the treatment in Ref. [45], we de-
fine a distance χ (�1,�2) between two generic hybridization
functions �1, �2 as

χ (�1,�2) =
∑

α=R,K

∫ +∞

−∞
dωW α (ω)

∣∣�α
1 (ω) − �α

2 (ω)
∣∣n

,

(20)
where W α (ω) is a positive-valued weight function which can
be typically set to a constant W α (ω) ≡ W , | · | is the complex
norm, and n can be typically fixed to 2.

The fitting procedure is then achieved by performing a
multidimensional numerical minimization of the function
χ (�target,�), where �target is the numerical data we want to
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fit, while � are the analytical fitting functions in Eqs. (14)
and (15). By default, our numerical code [54] uses the L-
BFGS-B minimizer provided by CppOptimizationLibrary
[55]. The L-BFGS-B algorithm is in fact able to handle simple
box constraints, which in our case are used to ensure that the
coefficient matrices in the Lindblad equation for the AIM are
positive semidefinite.

IV. STEADY-STATE QUANTUM ZENO REGIME
OF THE BOSE-HUBBARD MODEL

In this section, we present our DMFT results on the
driven-dissipative BH model introduced in Sec. II, focusing
in particular on the regime of strong two-particle losses. To
this extent, we briefly recall the results known in the litera-
ture for the case of a purely dissipative (no pump) problem,
studied in Refs. [13,25], and then we introduce a weak single-
particle pump to stabilize a finite-density stationary state. We
discuss the signatures of the QZE in the local properties of
the model, in particular in the occupation and in the local
spectral and correlation functions, and we show how our ED
impurity solver qualitatively reproduces the results obtained
in Ref. [32] with NCA. Finally, we present further insights on
the origin of the QZE within DMFT by looking at the structure
of the DMFT bath in this regime, and we provide evidence for
an effective dimer model to capture this physics.

A. Decay to the vacuum and emergence of hard-core bosons

We begin our discussion by considering the dissipative
Bose-Hubbard model obtained from Eqs. (2) and (3) by re-
moving the incoherent pump, which in the long-time limit ul-
timately corresponds to the complete depletion of the system.
In the regime of large dissipation, �2 � J , depletion is slow
and the dynamics of the system is described by an effective
hard-core boson problem, following Ref. [13]. In fact, when
�2 is the dominant energy scale, all states with two or more
bosons per site acquire a finite (and large) decay and do not
contribute to the long-time limit of the system. As was shown
in Ref. [13], the manifold controlling the long-time limit of
the model spans therefore states containing empty and singly
occupied sites only, i.e., the system can be mapped into an
effective hard-core boson problem with effective Hamiltonian

Ĥ eff = −J

z

∑
〈r, r′〉

ĉ†
r ĉr′ − Jeff

2

∑
r

Ĉ†
r Ĉr, (21)

where ĉr, ĉ†
r are hard-core bosonic operators, i.e., with a con-

straint enforcing a maximum occupation of one boson per site:

ĉr = |0〉r 〈1|r , ĉ†
r = |1〉r 〈0|r . (22)

The second term in Eq. (21) is instead written in terms of
two-particle operators

Ĉr = ĉr

∑
r′:〈r, r′〉

ĉr′ , (23)

where the sum over r′ is carried over the first nearest
neighbors of r, that destroy pairs of bosons in neighboring

sites. The quantity

Jeff
2 =

(
J

z

)2 U

U 2 + �2
2

(24)

is the effective energy associated to these pairs.
In addition to these hopping processes, the hard-core

bosons are still subject to a small residual dissipation that
ultimately empties out the lattice. This is a virtual dissipative
process that is obtained whenever a boson in a singly occupied
bosonic site hops to another neighboring singly occupied site
and forms a doublon which is then quickly ejected from the
system due to the fast two-particle losses. In other words,
the local two-particle dissipator in the Lindblad equation is
replaced by an effective nonlocal two-particle dissipator

ˆ̂Leff
D ρ̂BH = 2

∑
r

�eff
2

(
Ĉrρ̂

BHĈ†
r − 1

2

{
Ĉ†

r Ĉr, ρ̂
BH

})
, (25)

where

�eff
2 =

(
J

z

)2
�2

U 2 + �2
2

(26)

is the effective decay rate of pairs of bosons on neighboring
sites. The peculiarity of the effective dissipation is that it is
mediated by the original tunneling amplitude J: as J increases,
more and more bosons on neighboring sites are discarded
from the lattice. Even more interestingly, for �2 < U the
effective dissipation increases with the bare dissipation �2,
but only up to a maximum at �2 = U ; for �2 > U , instead,
the effective dissipation decreases as the bare dissipation �2

is increased. Eventually, at �2 � U , the effective dissipation
becomes

�eff
2 ≈

�2�U

(
J

z

)2 1

�2
, (27)

thus it decreases as �−1
2 . This regime where the effective

dissipation shows a seemingly paradoxical behavior, experi-
mentally observed with ultracold gases [19,20,22], has been
called the quantum Zeno regime for its analogy with Zeno’s
arrow paradox [56]. We emphasize that the original works
on the QZE focus on the effect of frequent projective mea-
surements on the unitary dynamics of an isolated system and
the consequent Zeno localization [17,18,57,58]. In the context
of open quantum systems described by a Lindblad master
equation, the analogy is best understood by unraveling the
master equation into quantum trajectories and interpreting the
resulting quantum jumps as the effect of a measurement click
[59]. In this context, the QZE corresponds to the regime of
strong dissipation, when the system is dynamically projected
in the dark sector of the Lindblad dissipator [13,25] rather
than exploring the full Hilbert space. In the present problem
this sector, composed of singly occupied and empty sites, can
still feature a nontrivial unitary dynamics and a small residual
hopping-induced dissipation (26). The hallmark of the QZE is
therefore the scaling of the effective dissipation as 1/�2.

Because of their origin in terms of virtual processes, the
hopping-induced dissipative processes described by Eq. (25)
are completely neglected by simple approaches such as the
Gutzwiller mean-field theory, and, even in the context of
DMFT, they cannot be handled using approximate solvers
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FIG. 3. Effective AIM used for the numerical simulations in
Sec. IV. The impurity site, representing a generic site of the original
lattice, is depicted on the left and has a bare frequency ω0 and a
Kerr nonlinearity U ; the bath sites, depicted on the right, do not have
Kerr nonlinearities and have bare frequencies ω1, ω2 and couplings
with the impurity ν1, ν2 that are treated as fitting parameters. Every
site has single-particle pumping, with P1 fixed and P111, P122 fitting
parameters. The impurity site has two-particle losses �2, while the
auxiliary bath sites have single-particle losses �111 and �122, again
treated as fitting parameters.

such as the Hubbard-I approximation [32]. On the other hand,
our nonperturbative implementation of DMFT is not limited
in this regard, and it is an ideal tool to explore this regime.
We shall also see that our ED implementation provides an
intriguing and insightful mapping onto an effective two-site
model.

B. Steady-state quantum Zeno regime

In Sec. IV A we considered the BH model in the absence
of any pump. Here, instead, we take the same approach of
Ref. [32] by including a small single-particle pumping P1 
�2 in the lattice in order not to have an empty stationary state.
This is a key difference compared to the effective model in
Eqs. (21) to (26), derived in Ref. [13] for a lattice without a
pumping mechanism.

We start performing our DMFT simulations on a Bethe
lattice2 with coordination number z = 6. We fix ω0 = 1 and
we set the Kerr-like nonlinearity to U = 10, which is large
when compared to ω0, so to have enough separation—equal to
2U for a single disconnected cavity—between the peaks in the
spectral function. In the following, we measure all the energy
scales in units of U . As for the hopping strength J , since �eff

2
is proportional to J2, decreasing (increasing) J is expected to
result in a less (more) prominent Zeno effect. We then explore
values of �2/U from 0.25 to 1.50 while we fix P1/U = 0.01
in the following. We consider a minimal impurity model with
two bath sites connected to the impurity site itself; see Fig. 3.
As we are going to discuss below, this turns out to be a suf-
ficient representation of the system in the Zeno regime. Since

2A variety of DMFT Hamiltonian studies have demonstrated a
strong similarity between the results on the Bethe lattice and on other
lattices. Therefore, we can expect a similar generality also for our
results, while retaining the numerical benefits of using the simplified
self-consistency relation (19).

FIG. 4. Mean occupation nloc = 〈â†â〉 at DMFT self-consistency
as a function of �2/U , normalized to its value at �2/U = 10; differ-
ent colors correspond to different values of J/U . The horizontal and
vertical dashed black lines mark the values nloc(�2/U )/nloc(10) = 1
and �2/U = 1, respectively; the solid black line marks the occupa-
tion minimum for different values of J/U . Parameters as in Fig. 6,
except for J/U = [0.2, 0.5] and �2/U = [0.25, 10.0].

we are focusing on the Zeno regime, where multiple bosonic
occupation is suppressed, we can choose quite a small Hilbert
space cutoff Ncutoff,0 on the impurity site in the numerical
calculations; in the following, we fixed Ncutoff,0 = 5. As for
the Hilbert space cutoff on the bath sites, instead, we have
to take some extra care; these sites reproduce the presence of
the original lattice itself, but while the single lattice site may
mainly occupy the states |0〉 and |1〉, this is not necessarily true
for a site that mimics the presence of multiple lattice sites. In
the following, we fixed Ncutoff,1 = Ncutoff,2 = 7; we discuss the
suitability of this choice below.

We start discussing the signatures of the steady-state
quantum Zeno (QZ) regime in the local properties of the
BH model, in particular the on-site occupation nloc. This
can can be calculated from the steady-state density matrix
ρ̂ss as nloc = 〈â†â〉 = Tr(â†âρ̂ss ), and it is shown in Fig. 4
over a broad range of �2/U and J/U , normalized to the
latest available value in the deep Zeno regime; we show
only a selection of J/U values due to data visualization
constraints.

The crossover between a regime in which the steady-state
occupation decreases and a regime in which it increases does
not occur exactly at �2/U = 1 for any value of J/U , as
it happens instead for the effective two-particle losses (26).
The reason, aside from the introduction of a small incoherent
pump not present in the effective model of Eqs. (21) to (26)
and which contributes to the steady-state occupation, is that
we also have a first-order contribution in Eq. (21), which
scales with J/z, while the second-order contribution respon-
sible for the Zeno effect scales as (J/U )2. The first-order
contribution is responsible for the shift of the minimum of
the steady-state occupation; however, when J is increased,
the second-order contribution becomes progressively domi-
nant, resulting in a convergence of the stationary point of
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FIG. 5. Local spectral function Aloc (top panel) and cavity corre-
lation function Cloc (bottom panel), shown in solid lines for increasing
values of �2/U (fading blue to strong blue). The red dashed lines
correspond to −zIm{�R}/(πJ2) (top panel) and −z�K/(2π iJ2)
(bottom panel), and are shaded in accordance with the respective
solid blue lines. According to the self-consistency condition on the
Bethe lattice (19), at a given value of �2/U the solid blue line and its
corresponding dashed red line should overlap for an ideal AIM. The
color scale and the simulation parameters are as in Fig. 6.

the steady-state occupation towards �2/U = 1—see the solid
black line in Fig. 4.

We now consider the local spectral and cavity correlation
functions, respectively defined as

Aloc(ω) = − 1

π
ImGR

loc(ω),

Cloc(ω) = − 1

2π i
GK

loc(ω),

(28)

and which encode, respectively, the spectrum and occupation
of single-particle excitations on top of the stationary state
[50,60]. Once the DMFT self-consistency has been reached,
these functions coincide with the analogous quantities at
the impurity site; we plot them in Fig. 5 (solid blue lines),
alongside their fitted bath hybridization functions (dashed red
lines), for a fixed J/U = 0.4. At the lowest value of �2/U
shown in the plot, we still have two visible peaks in the
spectral function (top panel), corresponding to the |0〉 → |1〉
transition at low energies and to the |1〉 → |2〉 transition at
higher energies. The bath sites, for their part, contribute each
one a Lorentzian in the bath hybridization function �; the
Lorentzian contributed by the site i = 1 fits the peak at low
energies (ω1 ≈ ω0 + U ), while the one contributed by the site
i = 2 fits the peak at high energies (ω2 ≈ ω0 + 3U ). As �2/U
is increased, the peak at high energies quickly becomes less
and less prominent until it becomes irrelevant in the spectral
function; on the other hand, the first peak in the spectral
function behaves with the opposite trend. As we comment
more in detail in Sec. IV C, this is a signature of the effective
narrowing of the Hilbert space to the two Fock states |0〉
and |1〉. While the disappearance of the secondary peak is
also visible in the cavity correlation function (bottom panel),

FIG. 6. Elements of the AIM on-site reduced density matrix ρni

in the Fock basis at site i with ni bosons. The impurity site is indexed
by i = 0 [panel (a)], while the bath site indexed by i = 1 (i = 2) is
the one at low (high) energies [panels (b) and (c), respectively]. �2/U
(or equivalently �2/J) is increased from fading blue to strong blue.
Parameters: z = 6 on the Bethe lattice, J/U = 0.4, P1/U = 0.01,
�2/U = [0.25, 1.50]. The cutoffs on the i = 0, 1, 2 site are, respec-
tively, 5,7,7, as commented in the text.

connected with the occupation, a corresponding increase or
decrease in the first peak is not immediately apparent.

For the regime considered in this work, the spectral peaks
at even higher energies, corresponding to transitions to states
with n > 2, are thus not relevant. Our effective AIM sketched
in Fig. 3, however, provides a great flexibility; in those
regimes in which the description of higher excitations is in-
stead important, the AIM can be easily modified by adding
further bath sites, with the caveat of an increased dimension
of the Hilbert space.

C. QZE, DMFT bath, and effective dimer model

In Sec. IV B we have shown that our DMFT-ED approach
is able to capture the steady-state QZE in the on-site occupa-
tion, a result that is typically beyond single-site mean-field
theories like Gutzwiller’s. In order to further highlight the
origin of this result within DMFT, it is useful to study more in
detail the properties of the DMFT bath in the QZ regime.

We plot in Fig. 6 the elements of the on-site reduced
density matrix in all the three sites of the auxiliary AIM,
for a fixed J/U = 0.4. These elements give the occupation
probability in each on-site Fock state. We immediately notice
that, on the impurity site [Fig. 6(a)], the contributions to the
density matrix come mainly from the Fock states |0〉 and |1〉;
together, these two states contribute (increasing from low to
high �2/U ) 98.8%–99.8% of the total weight on the impurity
site, thus validating our expectations on the extent of the
reduced Hilbert space and our cutoff choice for i = 0. The
situation is quite different in the auxiliary bath sites [Figs. 6(b)
and 6(c)], that instead display a thermal-like occupation. The
fact that the Fock states |n〉 with n � 2 are still relevant even
in the deep Zeno regime is the reason we are using a higher
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cutoff of 7 in the bath sites with respect to a cutoff of 5
that we use in the impurity site. An interesting result is the
remarkable difference in the order of magnitude of the oc-
cupation probabilities of the two bath sites. In particular, the
i = 2 bath site, at higher energies, becomes less and less
relevant as the two-particle losses are increased. This suggests
that deep in the QZ regime, an effective BH dimer model can
emerge.

In order to understand the origin of this result, we recall
that in the deep Zeno regime (�2 � U > J) we expect that
the Fock space on the impurity site is effectively reduced to
|0〉 and |1〉, since states with two or more particles are strongly
dissipated by the two-particle losses. As a consequence, the
spectral function on the impurity site has a single peak around
ω0 + U , corresponding to transitions between |0〉 and |1〉.
This is indeed confirmed if we look at the self-consistent
Green’s function in Fig. 5. However, as also made clear by
the Bethe lattice self-consistency condition (19), the auxiliary
bath in some sense mirrors the properties of the impurity site
(and in turn, those of the lattice model). This means that, since
the occupation on the impurity site is low due to the presence
of two-particle losses that dissipate states with higher occu-
pations, we expect the occupation on the auxiliary bath sites
to be low as well. Specifically, for the parameters discussed
here, the occupation on the i = 1 bath site [Fig. 5(b)], hav-
ing energy ω1 ≈ ω0 + U , is roughly in the range 0.5–0.7, so
based on considerations on the cutoff choice put forward in
our previous work [50], a cutoff of 7 is expected to provide
results with a negligible error. This is especially clear for
the i = 2 bath site (bottom panel), at energy ω2 ≈ ω0 + 3U ,
whose occupation visibly decreases as �2 is increased, due to
the fact that in the deep Zeno regime we expect not to have
any other spectral peaks except for the first one, as we indeed
observe in Fig. 5. At the higher values of �2 shown here,
the occupation probability of Fock states |n〉 with n � 4 is
already in the order of magnitude of the numerical noise. The
sizable difference on the order of magnitude of the occupation
probabilities of the two bath sites already points to the key
result that the i = 2 bath site, at higher energies, becomes less
and less relevant as the two-particle losses are increased. This
effectively allows us to solve the problem, in the deep Zeno
regime, via a linearized DMFT, i.e., a DMFT with a single
bath site. Interestingly, a similar approach has been proposed
as an approximate solution of DMFT in Ref. [61].

Finally, it is interesting to look for signatures of such a
transition in the properties of the auxiliary bath as well, since
we already pointed out that the bath itself acts as a mirror
image of the original lattice. Since the first bath site (i = 1)
is the only relevant one in the deep Zeno regime, we can
analyze its effective (in the semiclassical sense) dissipation
rate, given by the difference �eff

111 = �111 − P111 between the
single-particle dissipation rate and the single-particle pump
rate, as a function of �2/U . This quantity corresponds to the
HWHM of the Lorentzian contributed by this site to the bath
hybridization function. We see in Fig. 7 that this effective loss
rate qualitatively reproduces the behavior of the two-particle
effective loss rate �eff

2 , i.e., it first increases up to a maximum
value at �2/U ≈ 1, after which it starts decreasing as �2/U
is increased. The behavior of the effective loss on the first
auxiliary bath site provides a remarkably clear picture of the

FIG. 7. Effective loss rate �eff
111 = �111 − P111 on the first bath

site i = 1 (see also Figs. 5 and 6), normalized to its value at
�2/U = 10; different colors correspond to different values of J/U .
The horizontal and vertical dashed black lines mark the values
�eff

111(�2/U )/�eff
111(10) = 1 and �2/U = 1, respectively; the solid

black line marks the maximum �eff
111 for different values of J/U . Pa-

rameters as in Fig. 6, except for J = [0.2, 0.5] and �2 = [0.25, 10.0].

process through which DMFT successfully capture the quan-
tum Zeno effect, through an effective hard-core Bose-Hubbard
dimer. In this effective model one site describes the impurity
(and thus a given site of the original lattice) and it is therefore
dissipationless, being restricted to the two-state manifold by
the strong losses, while the other mimics the rest of the lattice
and is exposed to single-particle losses, with a rate controlled
by the Zeno scale and single-particle pump. Those two mech-
anisms, together with the impurity-bath coupling, set the local
occupation on the impurity site and provide the physical origin
for the QZ behavior discussed in Sec. IV B.

V. CONCLUSIONS

In this work, we have analyzed a driven-dissipative Bose-
Hubbard lattice in the thermodynamic limit, where the driving
is achieved via a single-particle incoherent pump at a rate P1

and the local dissipation removes pairs of particles from the
system at a rate �2. In order to perform a quantum treatment
despite the sheer size of the Hilbert space, we have employed
a formulation of the DMFT technique—originally developed
to study strongly correlated electronic systems—which deals
with driven-dissipative bosonic systems. The core idea of this
technique is to replace all the interconnected nonlinear lattice
sites surrounding any given lattice site with an effective linear
bath, which in our case is in turn parameterized in terms of a
finite number of linear auxiliary sites. The parameters of the
auxiliary sites are then self-consistently determined in order
to correctly reproduce the frequency-dependent local physics
of the lattice.

Such a driven-dissipative Bose-Hubbard lattice becomes
especially interesting in the presence of strong—compared
to the tunneling rate—local two-particle losses. In fact, in
this limit, the lattice can be mapped into a lattice of hard-
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core bosons with nonlocal two-particle losses at a rate �eff
2

induced by the tunneling rate. Interestingly, when the local
two-particle losses �2 overcome the local Kerr nonlinearity U ,
the nonlocal two-particle losses �eff

2 actually start decreasing
as �2 is increased, with a behavior �eff

2 ∼ �−1
2 in the limit

�2 � U . This regime is known as the quantum Zeno regime.
In our work we have studied the emergence of a quan-

tum Zeno regime in the stationary state, adding a small
single-particle pump to the two-body losses. The steady-state
quantum Zeno effect is then testified by the behavior of the
number of particles as a function of �2/U on a given lattice
site. While for �2/U � 1 the occupation decreases as the
local two-particle losses increase, for �2/U � 1 the quantum
Zeno effect results in an increase of such occupation as �2

is increased. This effect becomes stronger at higher values of
J/U , and our observations are in qualitative agreement with
DMFT results obtained with a NCA impurity solver [32].

Using our exact-diagonalization Lindblad impurity solver,
we have further highlighted the mechanism by which DMFT
is able to capture the Zeno regime, which is not captured
by the Gutzwiller mean-field theory. We have shown that
the structure of the impurity model simplifies in the strongly
dissipative limit, where the occupation on the impurity site
is restricted to the |0〉 → |1〉 manifold and only one bath
site remains effectively populated. Furthermore, the effective
dissipation of this impurity bath site is controlled by the
Zeno scale. Dynamical mean-field theory provides, therefore,
a simple physical picture for the emergence of the steady-state
Zeno regime in terms of an effective hard-core Bose-Hubbard
dimer.

In this work we have implemented [54] a straightforward
full diagonalization which severely limits the size of the ma-
trices. We can foresee an extension to Arnoldi diagonalization
in order to deal with larger Hilbert spaces which are neces-
sary to treat, e.g., systems with a finite condensate fraction
and with coherent pumping mechanisms. This will allow ex-
ploring systems with light-matter coupling at the quantum
level [47,49,62,63] and with nontrivial non-Markovian ef-
fects, making our OpenBDMFT implementation a promising
platform for the investigation of novel many-body physics.
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APPENDIX: AIM DIAGONALIZATION

In this Appendix we provide additional details on the
vectorization of the Lindblad equation and on the exact-
diagonalization impurity solver we have developed. For a

more in-depth discussion on our specific implementation, we
refer the interested reader to Refs. [53,54].

The AIM in Eqs. (10)–(13) can be numerically solved by
diagonalizing a matrix representing the action of the Lind-
bladian in an enlarged Fock space. In such an enlarged Fock
space, the density matrix is represented as a vector, hence this
mapping is commonly called vectorization.

A generic state of the enlarged Fock space is written
as |n; m̃〉 ≡ |n〉 ⊗ |m̃〉, where |n〉 ≡ |n0〉 ⊗ |n1〉 ⊗ · · · ⊗ |nNB〉
is a Fock state of the original AIM, while |m̃〉 ≡ |m̃0〉
⊗ |m̃1〉 ⊗ · · · ⊗ |m̃NB〉 is a Fock state of a duplicate of the
original AIM, marked by an additional tilde “∼.” In this
notation, the subscript “0” indicates the impurity site, so that
n̂0 = â†â and, for j > 0, n̂ j = b̂†

j b̂. Particles in the tilde copy
of the system are created by bosonic operators [ ˆ̃a, ˆ̃a†] = 1 and

[ ˆ̃bi,
ˆ̃b†

j] = δi j , which always commute with their respective
nontilde operators [64].

In this enlarged Fock basis, the vector representing the
density matrix is obtained as |ρ〉 = ρ̂ |I〉, where

|I〉 =
∑

n

|n; ñ〉 . (A1)

Once the Lindbladian is written as a matrix L̂, |I〉 has, by
construction, the key property that 〈I| L̂ = 0, hence it is called
the left vacuum. In the vectorized representation, the trace of
a generic operator Ô is obtained as Tr(Ô) = 〈I|Ô|I〉, while
its expectation value is given by 〈Ô〉 = Tr(Ôρ̂ ) = 〈I|Ô|ρ〉. In
particular, we obtain that 〈I|ρ〉 = 1, which is the vectorized
equivalent of the requirement that the density matrix has a
unity trace: Trρ = 1. In the following, we will drop the oper-
ator hats for notational convenience.

When acting on the left vacuum |I〉, an operator A acting
on the original system can be exchanged for its respective Ã
acting on the tilde system according to the following tilde-
conjugation rule:

A |I〉 = σAÃ† |I〉 , (A2)

where

σA =
{−i if A is a fermionic operator

1 if A is a bosonic operator . (A3)

Due to this property, the Lindblad equation transforms into
the vectorized form

d

dt
|ρ〉 = L |ρ〉 = LH |ρ〉 + LD |ρ〉 , (A4)

where, for a system described by a Hamiltonian H and by a
generic dissipator

LDρ =
∑

α

2γα

(
LαρL†

α − 1

2

{
L†

αLα, ρ
})

, (A5)

the vectorized representation yields

LH |ρ〉 = −i(H − H̃ ) |ρ〉 (A6)

and

LD |ρ〉 =
∑

α

γα

(
σLα

LαL̃α − L†
αLα − L̃†

αL̃α

) |ρ〉 . (A7)

013707-10



STEADY-STATE QUANTUM ZENO EFFECT OF … PHYSICAL REVIEW A 106, 013707 (2022)

FIG. 8. Block-diagonal structure for the gauge-symmetric Lind-
bladian of the AIM discussed in Sec. III B, with NB bath sites plus
the impurity, the latter indexed by “0.” The full Lindbladian matrix
has a size (

∏NB
i=0(Ncutoff,i + 1))2 × (

∏NB
i=0(Ncutoff,i + 1))2, but it can be

written as a block-diagonal matrix where each block is labeled by an

integer k, with ik an eigenvalue of ˆ̂K• = −i[N̂, •].

Note that the Lindbladian employed in Sec. III B possesses
a global U (1) gauge symmetry, i.e., all the particle creation
and annihilation operators can be rotated by a global phase.

This symmetry is expressed by the presence of a su-

peroperator ˆ̂K that commutes with ˆ̂L, which is simply the
superoperator generated by the total number of particles,
ˆ̂K• = −i[N̂, •], where N̂ = ∑NB

i=0 n̂i.

In the vectorized representation, ˆ̂K assumes a particularly

simple form: K = i(Ñ − N ) = ik, where, since we work in
the number basis, the linear operator K has eigenvalues ik,
k = 0, +1, −1, +2, −2, . . ..

Since the Lindbladian and K commute, they share a
common set of eigenvectors; hence we can classify the
eigenvectors of the Lindbladian by labeling them with the
eigenvalues of K, i.e., with k if we drop the imaginary unit for
convenience. In other words, the Lindbladian can be written as
a block-diagonal matrix, with each block (also called “sector”)

labeled by an integer value k which is equal to the difference
between the occupation in the tilde system and the occupation
in the original system; see Fig. 8.

Our C++ OpenBDMFT code [54] can perform the nu-
merical diagonalization via the standard LAPACK (or its
high-speed replacements) libraries via a user-friendly inter-
face provided by the Armadillo library [65,66], that we
have extended to support the two-sided diagonalization of
nonsymmetric matrices. However, due to the sheer size of the
problem, the diagonalization times via CPU-based routines
like LAPACK’s ones are particularly high. In order to further cut
down on the diagonalization times, we eventually customized
Armadillo’s internal diagonalization routines so to acceler-
ate the diagonalization via GPUs, when they are available.
The support for GPU acceleration is provided via the MAGMA
library [67–69].

The diagonalization process yields the eigenvalues Lα as
well as the binormalized left and right eigenvectors 〈lα| and
|rα〉 of the Lindbladian L̂:

〈lα| L̂ = Lα 〈lα| and L̂ |rα〉 = Lα |rα〉 , (A8)

where the biorthonormalization ensures that 〈lα|rβ〉 = δαβ .
This spectral information can be used to numerically cal-

culate the single-particle Green’s function on the impurity site
which, as discussed in Sec. III C, is the central object of any
DMFT calculation. In particular, the retarded and Keldysh
components of the impurity Green’s function in Eqs. (16) and
(17) have the following spectral representation [50]:

GR
imp(ω) =

∑
α

〈I | a | rα〉〈lα | a† | ρss〉 1

ω − iLα

−
(∑

α

〈I | a† | rα〉〈lα | a | ρss〉 1

ω + iLα

)∗
, (A9)

GK
imp(ω) = 2iIm

(∑
α

〈I | a | rα〉〈lα | a† | ρss〉 1

ω − iLα

)

+ 2iIm

(∑
α

〈I | a† | rα〉〈lα | a | ρss〉 1

ω + iLα

)∗
.

(A10)

[1] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299
(2013).

[2] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).

[3] S. Schmidt and J. Koch, Ann. Phys. 525, 395 (2013).
[4] K. Le Hur, L. Henriet, A. Petrescu, K. Plekhanov, G. Roux, and

M. Schiró, C. R. Phys. 17, 808 (2016).
[5] C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401

(2017).
[6] M. J. Hartmann, J. Opt. 18, 104005 (2016).
[7] L. M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys.

79, 096001 (2016).
[8] S. Alyatkin, H. Sigurdsson, A. Askitopoulos, J. D. Töpfer, and

P. G. Lagoudakis, Nat. Commun. 12, 5571 (2021).
[9] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2007).

[10] H. Pichler, J. Schachenmayer, A. J. Daley, and P. Zoller, Phys.
Rev. A 87, 033606 (2013).

[11] D. Poletti, P. Barmettler, A. Georges, and C. Kollath, Phys. Rev.
Lett. 111, 195301 (2013).

[12] R. Bouganne, M. Bosch Aguilera, A. Ghermaoui, J. Beugnon,
and F. Gerbier, Nat. Phys. 16, 21 (2020).

[13] J. J. García-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M.
Lettner, G. Rempe, and J. I. Cirac, New J. Phys. 11, 013053
(2009).

[14] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller,
Phys. Rev. Lett. 102, 040402 (2009).

[15] A. Kantian, M. Dalmonte, S. Diehl, W. Hofstetter, P. Zoller, and
A. J. Daley, Phys. Rev. Lett. 103, 240401 (2009).

[16] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq,
B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas, Nat. Phys.
16, 509 (2020).

013707-11

https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1002/andp.201200261
https://doi.org/10.1016/j.crhy.2016.05.003
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1038/s41467-021-25845-4
https://doi.org/10.1103/PhysRevA.87.033606
https://doi.org/10.1103/PhysRevLett.111.195301
https://doi.org/10.1038/s41567-019-0678-2
https://doi.org/10.1088/1367-2630/11/1/013053
https://doi.org/10.1103/PhysRevLett.102.040402
https://doi.org/10.1103/PhysRevLett.103.240401
https://doi.org/10.1038/s41567-020-0824-x


SECLÌ, CAPONE, AND SCHIRÒ PHYSICAL REVIEW A 106, 013707 (2022)

[17] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756
(1977).

[18] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys. Rev.
Lett. 85, 1762 (2000).

[19] N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J.
García-Ripoll, J. I. Cirac, G. Rempe, and S. Dürr, Science 320,
1329 (2008).

[20] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

[21] B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M. L.
Wall, K. R. A. Hazzard, B. Yan, S. A. Moses, J. P. Covey, D. S.
Jin et al., Phys. Rev. Lett. 112, 070404 (2014).

[22] T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, and Y.
Takahashi, Sci. Adv. 3, e1701513 (2017).

[23] T. Tomita, S. Nakajima, Y. Takasu, and Y. Takahashi, Phys. Rev.
A 99, 031601(R) (2019).

[24] H. Fröml, A. Chiocchetta, C. Kollath, and S. Diehl, Phys. Rev.
Lett. 122, 040402 (2019).

[25] D. Rossini, A. Ghermaoui, M. B. Aguilera, R. Vatré, R.
Bouganne, J. Beugnon, F. Gerbier, and L. Mazza, Phys. Rev.
A 103, L060201 (2021).

[26] L. Rosso, F. Iemini, M. Schiro, and L. Mazza, SciPost Phys. 9,
091 (2020).

[27] A. Biella and M. Schiró, Quantum 5, 528 (2021).
[28] T. Müller, M. Gievers, H. Fröml, S. Diehl, and A. Chiocchetta,

Phys. Rev. B 104, 155431 (2021).
[29] T. Maimbourg, D. M. Basko, M. Holzmann, and A. Rosso,

Phys. Rev. Lett. 126, 120603 (2021).
[30] T. Wasak, R. Schmidt, and F. Piazza, Phys. Rev. Research 3,

013086 (2021).
[31] P. L. Krapivsky, K. Mallick, and D. Sels, J. Stat. Mech. (2019)

113108.
[32] O. Scarlatella, A. A. Clerk, R. Fazio, and M. Schiró, Phys. Rev.

X 11, 031018 (2021).
[33] L. Rosso, D. Rossini, A. Biella, and L. Mazza, Phys. Rev. A

104, 053305 (2021).
[34] S. Finazzi, A. Le Boité, F. Storme, A. Baksic, and C. Ciuti,

Phys. Rev. Lett. 115, 080604 (2015).
[35] H. Weimer, Phys. Rev. Lett. 114, 040402 (2015).
[36] M. Schirò, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling, and H. E.

Türeci, Phys. Rev. Lett. 116, 143603 (2016).
[37] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, and

D. Rossini, Phys. Rev. X 6, 031011 (2016).
[38] H. Landa, M. Schirò, and G. Misguich, Phys. Rev. Lett. 124,

043601 (2020).
[39] H. Weimer, A. Kshetrimayum, and R. Orús, Rev. Mod. Phys.

93, 015008 (2021).
[40] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[41] K. Byczuk and D. Vollhardt, Phys. Rev. B 77, 235106

(2008).
[42] P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner, Phys.

Rev. Lett. 105, 096402 (2010).
[43] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett.

110, 086403 (2013).
[44] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P.

Werner, Rev. Mod. Phys. 86, 779 (2014).

[45] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni, Phys.
Rev. B 89, 165105 (2014).

[46] A. Le Boité, G. Orso, and C. Ciuti, Phys. Rev. Lett. 110, 233601
(2013).

[47] A. Biella, F. Storme, J. Lebreuilly, D. Rossini, R. Fazio, I.
Carusotto, and C. Ciuti, Phys. Rev. A 96, 023839 (2017).

[48] O. Scarlatella, R. Fazio, and M. Schirò, Phys. Rev. B 99, 064511
(2019).

[49] J. Lebreuilly, A. Biella, F. Storme, D. Rossini, R. Fazio, C.
Ciuti, and I. Carusotto, Phys. Rev. A 96, 033828 (2017).

[50] M. Seclì, M. Capone, and M. Schirò, New J. Phys. 23, 063056
(2021).

[51] H. U. R. Strand, M. Eckstein, and P. Werner, Phys. Rev. X 5,
011038 (2015).

[52] A. Kamenev, Introduction to the Keldysh formalism, Lecture
Notes, The Capri Spring School on Transport in Nanostructures
(2009), http://www.capri-school.eu/capri09/.

[53] M. Seclì, Topology and nonlinearity in driven-dissipative pho-
tonic lattices: semiclassical and quantum approaches, Ph.D.
thesis, SISSA, Trieste, 2021.

[54] M. Seclì et al. (unpublished).
[55] P. Wieschollek, CppOptimizationLibrary (2016), https://github.

com/PatWie/CppNumericalSolvers.
[56] R. P. Hardie and R. K. Gaye, in Complete Works of Aristotle,

Volume 1, Revised Oxford Translation, edited by J. Barnes
(Princeton University Press, Princeton, 1984), pp. 315–446.

[57] A. Peres, Am. J. Phys. 48, 931 (1980).
[58] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,

Phys. Rev. A 41, 2295 (1990).
[59] H. M. Wiseman and G. J. Milburn, Quantum Measurement and

Control (Cambridge University Press, Cambridge, 2009).
[60] O. Scarlatella, A. A. Clerk, and M. Schirò, New J. Phys. 21,

043040 (2019).
[61] M. Potthoff, Phys. Rev. B 64, 165114 (2001).
[62] J. Lebreuilly, Strongly correlated quantum fluids and effective

thermalization in non-Markovian driven-dissipative photonic
systems, Ph.D. thesis, Università degli Studi di Trento, Trento,
2017.

[63] R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, and
D. I. Schuster, Nature (London) 566, 51 (2019).

[64] I. Ojima, Ann. Phys. 137, 1 (1981).
[65] C. Sanderson and R. Curtin, J. Open Source Softw. 1, 26 (2016).
[66] C. Sanderson and R. Curtin, A user-friendly hybrid sparse ma-

trix class in C++, in Mathematical Software ICMS 2018, Lecture
Notes in Computer Science, edited by J. Davenport, M. Kauers,
G. Labahn, and J. Urban, Vol. 10931 (Springer, Cham, 2018),
pp. 422–430.

[67] S. Tomov, J. Dongarra, and M. Baboulin, Parallel Comput. 36,
232 (2010).

[68] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, Dense lin-
ear algebra solvers for multicore with GPU accelerators, in
2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW) (IEEE,
Piscataway, NJ, 2010).

[69] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S.
Tomov, and I. Yamazaki, Accelerating numerical dense linear
algebra calculations with GPUs, in Numerical Computations
with GPUs (Springer, Cham, 2014), pp. 3–28.

013707-12

https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevLett.85.1762
https://doi.org/10.1126/science.1155309
https://doi.org/10.1038/nature12483
https://doi.org/10.1103/PhysRevLett.112.070404
https://doi.org/10.1126/sciadv.1701513
https://doi.org/10.1103/PhysRevA.99.031601
https://doi.org/10.1103/PhysRevLett.122.040402
https://doi.org/10.1103/PhysRevA.103.L060201
https://doi.org/10.21468/SciPostPhys.9.6.091
https://doi.org/10.22331/q-2021-08-19-528
https://doi.org/10.1103/PhysRevB.104.155431
https://doi.org/10.1103/PhysRevLett.126.120603
https://doi.org/10.1103/PhysRevResearch.3.013086
https://doi.org/10.1088/1742-5468/ab4e8e
https://doi.org/10.1103/PhysRevX.11.031018
https://doi.org/10.1103/PhysRevA.104.053305
https://doi.org/10.1103/PhysRevLett.115.080604
https://doi.org/10.1103/PhysRevLett.114.040402
https://doi.org/10.1103/PhysRevLett.116.143603
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1103/PhysRevLett.124.043601
https://doi.org/10.1103/RevModPhys.93.015008
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.77.235106
https://doi.org/10.1103/PhysRevLett.105.096402
https://doi.org/10.1103/PhysRevLett.110.086403
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/PhysRevB.89.165105
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevA.96.023839
https://doi.org/10.1103/PhysRevB.99.064511
https://doi.org/10.1103/PhysRevA.96.033828
https://doi.org/10.1088/1367-2630/ac04c8
https://doi.org/10.1103/PhysRevX.5.011038
http://www.capri-school.eu/capri09/
https://github.com/PatWie/CppNumericalSolvers
https://doi.org/10.1119/1.12204
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1088/1367-2630/ab0ce9
https://doi.org/10.1103/PhysRevB.64.165114
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1016/0003-4916(81)90058-0
https://doi.org/10.21105/joss.00026
https://doi.org/10.1016/j.parco.2009.12.005

