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We theoretically study the collective excitation modes of a topological laser device operating in a single-mode
steady state with monochromatic emission. We consider a model device based on a two-dimensional photonic
Harper-Hofstadter lattice including a broadband gain medium localized on the system edge. Different regimes
are considered as a function of the value of the optical nonlinearity and of the gain relaxation time. The dispersion
of the excitation modes is calculated via a full two-dimensional Bogoliubov approach and physically interpreted
in terms of an effective one-dimensional theory. Depending on the system parameters, various possible physical
processes leading to dynamical instabilities are identified and characterized. On this basis, strategies to enforce
a stable single-mode topological laser operation are finally pointed out.
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I. INTRODUCTION

One of the most exciting applications of topological
photonics are the so-called topological lasers [1–4]. Such
topolaser devices are based on a topological photonic system
embedding a suitable gain material, so that laser oscillation
is induced to occur in a topologically protected edge mode
[5,6]. So far, the topolasing operation has been experimentally
demonstrated both in the zero-dimensional edge states of one-
dimensional arrays [7–10] as well as in the one-dimensional
edge modes of two-dimensional lattices [11–13]. As it was
theoretically pointed out [2,14], such devices hold promise for
optoelectronic applications since the chiral nature of the edge
modes guarantees an efficient phase locking of the emission
over macroscopic distances as well as enhanced robustness
against fabrication disorder [2,15]. This is of crucial im-
portance whenever one needs to combine high power and
long-lasting coherence in a single device.

While a clean single-mode emission has been achieved
in [11,12], several other experimental and theoretical works
have pointed out more complex behaviors. The topological
quantum cascade laser of [13] displays some secondary spec-
tral peaks. For a tight-binding topolaser model, the possibility
of dynamical instabilities arising from the interplay of optical
nonlinearities and slow carrier dynamics has been numerically
highlighted [16]. Since such effects may dramatically affect
the coherence properties of the topolaser emission as well
as its power efficiency, it is of crucial importance to fully
understand the various processes that may lead to instabilities.

In this work, we report a numerical and analytical study
of the dispersion of the collective excitations around a
monochromatically oscillating steady state. Our study is based
on the Bogoliubov theory of the collective excitations on top
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of dilute Bose-Einstein condensates [17], which was then gen-
eralized to lasers and nonequilibrium condensates of exciton
polaritons [18]. On one hand, our analysis allows identifica-
tion of the general features of the excitation modes and the
dynamics of quantum and classical fluctuations of generic
topolaser devices. In particular, it provides microscopic sup-
port to the numerical observations in [19] and to the study of
the long-distance and long-time correlators of the fluctuations
that are involved in the spatiotemporal coherence properties
of the emission [15]. On the other hand, our theory recovers
the dynamical instabilities anticipated in [16] and shines light
on the different physical processes that may destabilize a
monochromatic topolaser operation and, eventually, lead to a
chaotic multimode emission. A related study of the collective
excitations of topolaser devices has appeared in [20], focusing
on the case of a photonic Haldane model but restricting to the
idealized class-A limit of a fast carrier dynamics.

Here we go beyond this approximation and develop a more
sophisticated theory that includes the slow carrier dynamics
of realistic semiconductor-based devices. While the idealized
tight-binding model considered in the present work is likely
to only provide qualitative insight on semiconductor laser
arrays [21], we expect it to be quantitatively predictive for the
lattices of micropillars [22] used in polariton-based topolaser
devices [23]. From a general theoretical perspective, our work
offers a powerful framework of major utility to characterize
instability processes in generic topolaser systems. This will
be of great importance in view of designing devices where
instabilities are tamed and the emission is robustly clean and
monochromatic.

The structure of the work is the following. In Sec. II,
we review the general concepts of a topological laser device
based on including gain into a photonic topological Harper-
Hofstadter model and we introduce the theoretical model. In
Sec. III, we characterize the steady state of the lasing device.
In Sec. IV, we calculate the collective excitation modes in
the simplest regime where the gain medium has a very fast
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recovery time and no optical nonlinearity is present beyond
gain saturation, finding a stable topolaser behavior. An effec-
tive analytical one-dimensional (1D) theory able to recover
the main features of the numerical 2D calculation is then pro-
posed and quantitatively validated. In Sec. V, we extend our
theory of collective excitations to more complicated regimes
displaying a slow carrier dynamics in the gain medium and/or
significant nonlinearities: this allows us to identify the main
processes that may lead to dynamical instabilities and to pro-
pose strategies to tame them. Conclusions are finally drawn in
Sec. VI.

II. THE HARPER-HOFSTADTER TOPOLOGICAL LASER

In this section, we review the general features of a laser
device built by introducing gain on the edge of a topological
photonic lattice. Going beyond our previous works [15,19],
we consider a wider class of devices where different regimes
of operation are found depending on the timescale of the
carrier dynamics in the gain medium and on the optical non-
linearity of the platform.

A. The Harper-Hofstadter model

As a specific and most relevant example, we focus on the
case of a photonic lattice implementing the so-called Harper-
Hofstadter (HH) model [5,24,25]. In the Landau gauge, the
HH Hamiltonian reads

H = −J
∑
x,y

{ψ̂†
x,yψ̂x,y+1 + e−2π iθyψ̂†

x,yψ̂x+1,y + H.c.}, (1)

where the zero of energies is set at the bare frequency of
the sites, the sum runs over all the sites of the lattice, x, y =
1, . . . , nx,y, ψ̂x,y is the (bosonic) photon annihilation operator
at the site (x, y), and J is a real-valued hopping amplitude. The
topological properties of this lattice are due to the synthetic
magnetic field piercing it. Its strength is quantified by the
flux θ per plaquette in units of the magnetic flux quantum.
For rational θ = p/q, the bulk eigenstates distribute in q en-
ergy bands with nontrivial topological properties encoded in
their Chern numbers. An example of such band dispersion is
shown in Fig. 1(a) for the specific θ = 1/4 case on which
we are going to focus throughout this work. This dispersion
is obtained by calculating the single-particle eigenmodes of
the full two-dimensional Harper-Hofstadter Hamiltonian (1)
under periodic (open) boundary conditions along the x axis
(y axis). Given the translational invariance along x, this re-
duces to a one-dimensional diagonalization problem for each
value of kx.

In particular, note the chiral edge states that appear in
the energy gaps between the bands. Their dispersion ε(kx ) is
plotted in Fig. 1(a) in blue and green lines for the y = 1, ny

edges, respectively. Two such edge modes exist within each
energy gap: they are localized on the opposite y = 1, ny phys-
ical edges of the system and propagate with opposite group
velocities. For instance, the edge mode of the negative energy
gap with positive group velocity is localized on the y = 1 side,
while the one with negative group velocity is localized on the
y = ny side. The opposite holds for the edge modes in the
positive energy gap.

FIG. 1. Harper-Hofstadter model. (a) Energy bands of the con-
servative Harper-Hofstadter Hamiltonian given by Eq. (1) with flux
θ = 1/4 in a finite lattice of ny = 399 sites along y with periodic
boundary conditions along x. The dark-blue (dashed-green) lines
indicate the dispersion of the edge modes localized on the y = 1
(y = ny) edge. The dark dot indicates the spatially most localized
edge mode within the lower energy gap on the y = 1 edge. (b) Spatial
localization function �(kx ) (red line) and curvature of the dispersion
(blue line) of the edge states. The left (right) part of the plot refers to
the edge mode living on the y = 1 edge in the lower (upper) energy
gap. (c) Imaginary part of the Bogoliubov spectrum of the linearized
dynamics around the vacuum solution for a pump strength right at
the lasing threshold. The thick black lines show the prediction of the
full 2D model, while the thin red ones show the prediction of the 1D
effective theory for the excitations living on the y = 1 edge.

Some crucial properties of the edge modes localized on
the y = 1 edge are summarized in Fig. 1(b), namely, their
effective mass m−1

∗ = ∂2
kx
ε(kx ) (related to the curvature of

the energy dispersion, blue line) and their overlap with the
edge site y = 1 (red line). The latter is quantified by the edge
localization function,

�(kx ) = |φy=1(kx )|2, (2)

where φy(kx ) is the wave function of the edge mode of wave
vector kx, normalized according to

∑
y |φy(kx )|2 = 1. As ex-

pected, the localization is maximum at kx values for which
the edge mode is located around the center of the energy gap
[black dot in Fig. 1(a)].

B. Gain, loss, and nonlinear terms

At the semiclassical level, we can replace the bosonic field
operators on each lattice site with c-number amplitudes and
recast the field dynamics in terms of the following equation of
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motion:

i
∂ψx,y(t )

∂t
=

[
g|ψx,y|2 + gRNx,y + i

2
(RNx,y − γ )

]
ψx,y

− J (ψx,y+1 + ψx,y−1 + e−2π iθyψx+1,y

+ e+2π iθyψx−1,y). (3)

Hopping between neighboring sites occurs along both x, y di-
rections. In the chosen Landau gauge, the synthetic magnetic
field is encapsulated in a y-dependent phase of the hopping
along x. All lattice sites experience losses at a rate γ and
the nonlinear refractive index results in an intensity-dependent
frequency shift proportional to the nonlinearity coefficient g.

The gain is provided by a reservoir of incoherent excita-
tions of density Nx,y obeying the rate equation,

∂Nx,y

∂t
= Pδy,1 − (γR + R|ψx,y|2)Nx,y, (4)

and describing, e.g., the density of electrons promoted to
the conduction band of a semiconductor gain material. This
reservoir is pumped at a site-dependent rate: as indicated in
(4), we concentrate on the case where the pumping is localized
on the y = 1 edge of the lattice and here has a uniform rate
P. The reservoir decays on a characteristic timescale set by
γR and provides stimulated emission into field modes with
an efficiency R. The effect of the incoherent excitations on
the refractive index, and hence on the resonance frequency
of each site, is included by the photon-reservoir interaction
term gRNx,y, which is at the origin of the Henry linewidth
enhancement factor [26].

An especially important regime is identified when the car-
rier dynamics is very fast compared to the other timescales
of the device, i.e., for γR/γ � 1. In this case, we can make
use of the adiabatic approximation and set the left-hand side
of Eq. (4) to zero. The carrier density then instantaneously
follows the field dynamics according to

Nx,y = Pδy,1

γR + R|ψx,y|2 . (5)

In the following, a device satisfying this condition and fea-
turing negligible nonlinearities g, gR = 0 is referred to as a
class-A laser and is described by the following equations of
motion for the field amplitude:

i
∂ψx,y(t )

∂t
= (Hψ )x,y + i

2

(
βPδy,1

1 + β|ψx,y|2 − γ

)
ψx,y, (6)

where the hopping matrix is such that

(Hψ )x,y = − J[ψx,y+1 + ψx,y−1 + e−2π iθyψx+1,y

+ e+2π iθyψx−1,y], (7)

and the effective saturation parameter is β = R/γR. This sim-
plified model was used in our previous works [15,19].

The present work goes beyond this regime and extends the
investigation to a more general class of devices, where the
reservoir cannot be adiabatically eliminated and/or signifi-
cant nonlinearities are present, g, gR �= 0. Such a nonadiabatic
γR < γ regime is commonly found both in polariton topolaser
devices [23] and semiconductor laser ones [12,16]: in the
former case, this is due to the long recombination rate of the

excitons feeding the condensate, while in the latter case, it
is due to the slow dynamics of carriers in the semiconductor
gain medium. On the other hand, optical nonlinearities due to
repulsive polariton-polariton and polariton-reservoir interac-
tions g, gR > 0 are especially significant in polariton devices
where the ensuing blueshifts gn and gRnR may exceed the loss
rate γ and even approach the hopping amplitude J [22,27,28].

III. STEADY-STATE LASING SOLUTION

As usual, the first step in the calculation of the fluctuation
dynamics of a laser device consists in characterizing its steady
state. As long as losses overcome the gain, the steady state
of the device is the electromagnetic vacuum ψx,y = 0 and
Nx,y=1 = P/γR. A nontrivial steady state is instead reached
when the gain starts exceeding losses.

The transition between the two regimes defines a threshold
value Pth for the pump rate P, which can be calculated by
linearizing the motion equation (3) for the field δψx,y around
the vacuum solution. Thanks to the translational symmetry
of our system along the periodic x direction, it is useful to
move to Fourier space along x and, for each kx value, solve
the one-dimensional eigenvalue problem,

ω δψkx,y = i

2

[
(R − 2igR)

P

γR
δy,1 − γ

]
δψkx,y

− J[δψkx,y+1 + δψkx,y−1

+ 2 cos(2πθy + kx )δψkx,y]. (8)

An example of the spectrum of the corresponding ny × ny

matrix is shown in Fig. 1(c) for parameters very close to the
lasing threshold. The precise position Pth of the threshold can
be determined as the point at which the imaginary part of one
of the eigenvalues turns positive, meaning that the vacuum
solution is no longer dynamically stable.

For P > Pth, the system departs from the unstable vacuum
solution and, under suitable conditions to be discussed better
in what follows, it can reach a nontrivial, dynamically stable
stationary state displaying a periodic oscillation of the field at
some frequency ωLas. Our numerical study of this dynamics
is carried out by solving the evolution equations (3) and (4)
in real time. This is done using a fourth-order Runge-Kutta
algorithm, starting from a small random complex amplitude
on each x, y site to trigger the instability. In order to character-
ize the steady state, we let the evolution run for long enough
times (of the order of 106 times steps) until a clean steady
state is reached. Typical lattice sizes used in our simulations
are nx = 64 and ny = 23 with periodic boundary conditions
along x. Accurate results are obtained with a typical time step
of the order of dt = 0.005/J .

Besides the numerical study, analytical arguments can be
used to understand the physics of the steady state. Thanks to
the translational invariance along the x axis, the monochro-
matically oscillating steady state can be formally written as

ψ ss
x,y(t ) = ψ0

x,ye−iωLast = ψ0
y e−iωLast+ikLas

x x, (9)

N ss
x,y(t ) = N0δy,1, (10)
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where the lasing frequency ωLas is self-consistently chosen by
the system dynamics. Unless P is very close to the threshold
Pth, the lasing wave vector kLas

x is randomly selected within the
range of kx modes for which the vacuum state is dynamically
unstable. This selection is triggered by external noise or by the
initial conditions imposed to the field [19]. The global phase
of the oscillating field is randomly selected at each instance
of laser operation, but then it stays stable for macroscopically
long times: this is a characterizing feature of laser emission
and is related to the spontaneous breaking of the global U(1)
symmetry of Eq. (3) that occurs above threshold.

In Fig. 1(c), we illustrate how, for our pumping localized
on an edge, the lasing instability is stronger for the chiral
edge states localized on the y = 1 pumped side than for the
bulk modes that experience a reduced overlap with the edge.
Among the chiral edge states, the ones located around the
center of the energy gap are the most localized in space and
thus feel the largest gain. Given the small but significant pen-
etration of the edge states into the lossy bulk, the threshold is
pushed at a slightly higher pumping value Pth = 1.142γ γR/R
than the one Pth,1 = γ γR/R of an isolated resonator.

As long as the nonlinearities g, gR can be neglected, the
effective gain is equal for the negative and positive frequency
edge modes as shown in Fig. 1(c), so the instability occurs
with the same probability in each of the chiral edge modes.
This is perfectly consistent with our previous numerical study
[19]. This symmetry that holds for g, gR = 0 is due to the
extended chiral CPxT symmetry that our system inherits from
the one of the underlying HH model. Indeed, for the conserva-
tive model, we have three discrete symmetries, and we review
here their action on a generic eigenstate in the form (9). To
begin with, the PyT symmetry also requires that

[PyT ψ ss]x,y(t ) = e2π iθ (ny+1)x
(
ψ0

x,ny−y+1

)∗
e−iωLast (11)

is an eigensolution of the same frequency and with momentum
2πθ (ny + 1) − kx; importantly, if ψ ss

x,y were localized on the
y = 1 side, the transformed state would live on the y = ny

edge. Physically, this symmetry corresponds to a reflection
plus time-reversal symmetry of the cyclotron orbits in a Hall
bar, connecting edge modes located in the same energy gap
and living on different edges of the system. Analogously, one
would define the PxT symmetry as

[PxT ψ ss]x,y(t ) = (
ψ0

nx−x+1,y

)∗
e−iωLast . (12)

However, since ψ0
y is (proportional to) a real vector, this

mapping corresponds to simple multiplication by a phase [29].
Finally, the chiral symmetry,

[Cψ ss]x,y(t ) = (−1)x+yψ0
x,ye+iωLast , (13)

defines an eigenstate of opposite frequency −ωLas and shifted
wave vector kx + π [30]. This transformation explains the
overall symmetric structure of the HH spectrum with respect
to the zero-energy point. Evidently, the C symmetry can only
be defined on a lattice and does not exist in a continuum
geometry where all Landau levels have positive energy.

Coming back to the topolaser, the presence of gain and
losses breaks the above symmetries; nonetheless, given the

steady-state lasing state (9),

[CPxT ψ ss]x,y(t ) = (−1)x+y
(
ψ0

nx−x+1,y

)∗
e+iωLast (14)

is also a solution of wave vector kx + π , frequency −ωLas, and
localized on the same edge. Notice that the lasing state ψ0

y
cannot be taken any more with real entries (see Appendix A);
that is why the action of PxT is nontrivial. For nonvanishing
nonlinearities g, gR �= 0, this CPxT symmetry breaks down
and the lasing states in the two topological energy gaps have
different properties. For instance, if gR > 0, (gR < 0), the
lasing threshold is slightly lower for the positive (negative)
energy edge modes than for the negative (positive) energy
ones [16].

IV. COLLECTIVE EXCITATIONS OF CLASS-A
TOPOLOGICAL LASERS

After having identified, in the previous section, the steady-
state lasing state, we now proceed with the investigation of its
collective excitations, namely, the linearized dynamics around
the steady state. This study is the microscopic complement to
the statistical study of the coherence properties of the emis-
sion [15], and it provides crucial insight into the dynamical
stability of the lasing state. After presenting the results of a
full numerical calculation, we will develop a deeper under-
standing of the physical features by means of an effective 1D
model for the edge state dynamics. In doing so, a major focus
will be put on the soft Goldstone branch corresponding to
the spontaneously broken U(1) symmetry: its dependence on
the curvature of the edge-mode dispersion and on its spatial
localization on the edge of the physical lattice will be high-
lighted. In this section, we start our study from the simplest
case of class-A devices displaying a fast reservoir γR/γ � 1
and no optical nonlinearities g = gR = 0, postponing the more
general analysis to Sec. V.

A. 2D Bogoliubov theory

As usual in the Bogoliubov approach [18], the first step
of the calculation of the collective modes is to accurately
determine the steady state in the form (9). As it was discussed
in the previous section, this can be done by numerically simu-
lating the evolution equation (6) with a suitable Runge-Kutta
technique. The lasing frequency ωLas

x and wave vector kLas
x

are obtained by temporal and spatial Fourier transform of the
steady-state field amplitude on the y = 1 edge.

Then, one has to linearize the equations of motion around
the steady state according to the ansatz

ψx,y(t ) = [
ψ0

y + δψx,y(t )
]

e−iωLast+ikLas
x x. (15)

Thanks to the translational invariance, the collective modes
are classified by the x component of the wave vector kx.
One can thus switch to Fourier space along x and, for each
value of kx, one can write a system of linear equations for
the corresponding components of the field δψkx,y and δψ∗

kx,y
.

The eigenmodes of this linearized evolution are obtained from
the 2ny × 2ny linear problem determined by

ωBog δψk,y = ([H − ωLasI] δψ )k,y + Dy δψk,y + D̃y δψ∗
−k,y

(16)
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FIG. 2. Dispersion of the collective excitation modes on top of a class-A topological laser. The left (right) panels show the real (imaginary)
part of the Bogoliubov dispersion for a system of size ny = 23 that is lasing on the maximally localized mode at kLas

x = −0.982 for which gain
is strongest. Black (red) dots indicate the results of the full 2D model (1D effective theory). G (A) in the right panel indicate the Goldstone
(amplitude) branches. System parameters: γ = 0.02J , adiabatic regime γR/γ = +∞, P/Pth,1 = 2, g = gR = 0.

and the complex conjugate equation. Here, both the wave
vector k = kx − kLas

x and the frequency ωBog are measured
with respect to the lasing ones, I is the ny × ny identity matrix,
and we have defined the shorthands

Dy = i

2

[
βPδy,1

1 + β
∣∣ψ0

1

∣∣2 − β2Pδy,1

∣∣ψ0
1

∣∣2

(
1 + β

∣∣ψ0
1

∣∣2)2 − γ

]
, (17)

D̃y = − i

2

β2Pδy,1
(
ψ0

1

)2

(
1 + β

∣∣ψ0
1

∣∣2)2 , (18)

where ψ0
1 is the component of the steady state on the edge site

y = 1 that is endowed with gain. Note that the diagonal block
H couples neighboring sites along y, so that in a given k block,
all δψk,: are linearly coupled to δψ∗

−k,:, where the symbol :
indicates a vector with indices y = 1, . . . , ny. The problem
of determining the collective excitation modes then amounts
to the numerical diagonalization of a 2ny × 2ny Bogoliubov
matrix for each kx.

A typical example of the collective excitation spectrum
is displayed by the black dots in Fig. 2. As expected, it
displays the characteristic features of nonequilibrium con-
densates [18]. In the real part of the spectrum (left panel),
the excitations around the lasing mode (small ωBog and k)
exhibit a zone of adhesion. In this region, the Bogoliubov
branch follows the HH edge mode, properly shifted according
to ωLas and kLas

x . In the imaginary part of the spectrum (right
panel), we recognize instead the typical splitting between the
Goldstone and the amplitude branches, respectively related
to phase and intensity fluctuations. As k → 0, the dispersion
ω

Bog
+ (k) of the Goldstone mode tends to zero in both the real

and imaginary parts as a consequence of the spontaneous
breaking of the U(1) phase symmetry. The amplitude mode
has instead a finite negative imaginary part, Im[ωBog

− (k →
0)] = −, corresponding to the relaxation rate of intensity
fluctuations,  = γ (1 − Pth/P) < γ (see the 1D model of the
next paragraph for the derivation of this formula): for P � Pth

above threshold,  recovers the bare decay rate γ ; closer to
the threshold, it is smaller than γ ; and it tends to zero right
above the threshold Pth.

One of the peculiarities of our HH laser is the presence of
another edge mode with opposite chirality, living on the same
edge in the other energy gap at opposite wave vector. In the
excitation spectrum, this additional edge mode corresponds to
the maximum of the imaginary part around k � ±π . Since it
is also localized on the same edge, this opposite chirality mode
also benefits from gain and thus displays a slower decay rate
 than the bulk modes. These latter have, in fact, a negligible
overlap with the gain material and thus decay at the bare loss
rate γ .

Altogether, these numerical calculations confirm the dy-
namical stability of topolaser devices in the regime where the
gain medium adiabatically follows the field dynamics and no
other optical nonlinearity is present besides gain saturation.
Getting analytical insight into the physics underlying these
numerical results will be the subject of the next section.

B. Effective 1D model

We now proceed to develop an effective 1D model that is
able to provide analytical insight into the collective excitation
spectra numerically calculated in the previous section using
the full 2D theory. This method relies on the assumption that
the lasing wave function closely follows the corresponding
eigenstate of the underlying conservative HH model. First,
notice that the translational invariance along x allows one to
write the steady state as a plane wave of quasimomentum klas

x
also in the nonlinear case. Then, one formulates the ansatz

ψ ss
x,y(t ) � ψ sseikLas

x xφy
(
kLas

x

)
e−iωLast , (19)

where φy(kx ) is the transverse wave function of the edge mode
at wave vector kx. This writing is expected to be accurate in
the γ � J limit where the band gap is much wider than the
frequency scale of the dynamics. A brief discussion of the first
corrections in γ /J is given in Appendix A.

We will also consider small fluctuations on top of this
solution, in the form

ψx,y(t ) =
∫

dk

2π
ei(kLas

x +k)x ψ̃ (k, t ) φy
(
k + kLas

x

)
e−iωLast , (20)
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where ψ̃ (k, t ) = 2π δ(k) ψ ss + δψ̃ (k, t ), with δψ̃ (k, t ) small.
The goal of this section is to determine an equation of motion
for the 1D wave function,

ψ (x, t ) ≡
∫

dk

2π
ei(kLas

x +k)x ψ̃ (k, t ) e−iωLast . (21)

As a first step, we are now going to determine the ampli-
tude ψ ss of the plane-wave wave function at the steady state.
To this purpose, we inject the ansatz (19) into the evolution
equation, and then we overlap the result with φy(kLas

x ) [31].
This gives

0 = ε
(
kLas

x

) − ωLas + i

2

[
βP�

(
kLas

x

)
1 + β �

(
kLas

x

) |ψ ss|2 − γ

]
, (22)

where ε(kx ) is the edge-mode dispersion and �(kx ) =
|φy=1(kx )|2 is the edge localization function that quantifies the
overlap of the HH edge states with the y = 1 edge. Splitting
the real and imaginary parts of this equation, we obtain

ωLas = ε
(
kLas

x

)
, (23)

|ψ ss|2 = 1

β�
(
kLas

x

) (P/Pth − 1). (24)

The lasing frequency is set by the bare dispersion of the edge
state, whereas the lasing threshold

Pth = γ

β�
(
kLas

x

) (25)

depends on the overlap of the mode with the gain region via
the �(kx ) localization factor. As one can see by the red lines in
Fig. 1(b), for the most localized modes, this factor can reach
values close to unity.

As the next step, we try to write the equation of motion for
ψ (x, t ) below threshold. Since the equation of motion in this
regime is linear, the different Fourier components decouple
and one can write

i∂tψ (x, t ) =
{
ε(k̂x ) + i

2
[�(k̂x )βP − γ ]

}
ψ (x, t ), (26)

where k̂x = −i∂x is the usual momentum operator and with
the only assumption that the coupling to bulk modes is negli-
gible. The conservative part of the dynamics follows the HH
edge dispersion and the effective gain strength has a k depen-
dence given by the edge localization function �: the stronger
the localization, the stronger the effective gain. This equa-
tion being linear, its collective excitation modes are trivially
given by

ωBog(k) = ε(kx ) − ωLas + i

2
[�(kx )βP − γ ], (27)

where k is the momentum with respect to the lasing one,
kx ≡ kLas

x + k. This effective 1D prediction for the dispersion
around the vacuum state is plotted as a red line in Fig. 1(c): as
long as one focuses on the edge modes, it excellently recovers
the full 2D calculation shown by the black lines. In particular,
the 1D model provides a reliable prediction for the mode
with the strongest gain, which is going to lase first. Of course,
the full 2D calculation also includes the bulk bands that are
not captured by the 1D model: however, given their smaller
overlap with gain, the imaginary part of their frequency is
much larger and negative.

While the linear dynamical equation (26) is exact in the
γ /J → 0 limit, extending it to the nonlinear regime where
gain saturation is important is made nontrivial by the simulta-
neous x and kx dependence of the gain term: gain saturation is,
in fact, a spatially local effect, while the kx dependence of gain
via the edge localization function is a momentum-space effect.
In the spirit of our previous discussion, one can generalize
Eq. (26) and write

i∂tψ (x) =
{
ε(k̂x ) + i

2

[
�(k̂x )

βP

1 + β|ψ (x)|2 − γ

]}
ψ (x).

(28)

Notice that the edge localization and the saturation terms do
not commute and the order has been chosen to get consistent
results with the 2D theory.

While we provide no rigorous derivation of this formula
[32], we show that the Bogoliubov edge eigenenergies are
accurately recovered and conveniently interpreted within this
approach. Indeed, the Bogoliubov equations for Eq. (28) can
be cast in the usual 2 × 2 matrix form,

ωBog(k)

(
uk

vk

)
=

[
e(k) + iγ

2 [λ(k) − 1] − i
2λ(k) − i

2λ(k)
− i

2λ(−k) −e(−k) + iγ
2 [λ(−k) − 1] − i

2λ(−k)

](
uk

vk

)
, (29)

where we have defined the shorthands e(k) = ε(kLas
x + k) −

ωLas and λ(k) = �(kLas
x + k)/�(kLas

x ). By expanding the
HH edge state dispersion ε(k) − ωLas � vgk + k2

2m∗
, it is im-

mediate to see that the group velocity (as well as the higher
odd terms of the dispersion) gives a diagonal term that con-
tributes as a constant to the Bogoliubov dispersion. The λ(k)
coefficient is of a geometric nature and accounts for the k
dependence of the edge-mode localization. The Bogoliubov
spectrum that results from the diagonalization of this matrix
consists of two branches ω

Bog
± (k) and is plotted as red lines in

Fig. 2. The agreement with the full 2D numerical calculation
is excellent: both the Goldstone and amplitude branches are
quantitatively recovered by ω

Bog
+ (k) and ω

Bog
− (k), respectively,

as well as the dispersion of the edge mode with opposite
chirality. Of course, the bulk bands are not included in the
1D model.

Among all the Bogoliubov modes, the ones with the slow-
est relaxation rate play a very important role in determining
the long-distance, long-time behavior of the spatiotempo-
ral coherence properties of the laser emission [15]. If the
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FIG. 3. Scaling of the Goldstone branch at small k. The red,
green, and blue lines show the Goldstone and the amplitude branches,
calculated with the full 2D model for different hopping strengths
and pumping parameters, as detailed in the legend. The thick black
dashed line is a quadratic fit of −Im[ωBog(k)], on top of which
all three dispersion relations collapse at small k. The thin black
dotted lines correspond to the (k2/2m∗)2/ scaling predicted by the
1D model. The magenta dash-dotted line indicates the relaxation
rate at which Goldstone and amplitude branches stick for P/Pth,1 =
2. Other parameters: kLas

x = −0.982, adiabatic regime γR/γ = ∞,
g = gR = 0.

localization of the edge mode was uniform in k, λ(k) = 1
(as assumed, for instance, in [20]), Eq. (29) would predict a
quartic ∼k4 behavior of the decay rate of the Goldstone
branch at small k, proportional to the curvature of the edge
mode or, equivalently, to the inverse of the effective mass
1/m∗, Im[ωBog

+ (k)] � −(k2/2m∗)2/. Upon closer inspection
of our theory, however, one notices that the k dependence of
the localization function entails a quadratic behavior,

Im[ωBog
+ (k)] � −γ

2

λ′′(0)

2
k2, (30)

for k → 0, which has a geometric origin and is independent
of J/γ and, thus, of the effective mass m∗.

All these nontrivial predictions of the 1D model are well
confirmed by the exact 2D dispersion, plotted on a magnified
scale in Fig. 3 (though, there is some quantitative discrepancy
in the coefficient of k2, not shown). For a few different values
of J/γ and of the pumping P, the three different dispersions
fall on the same curve at very small k. At intermediate k, the
curvature of the HH edge mode starts playing a crucial role
and, for sufficiently large J/γ , the imaginary part matches
the ∼(k2/2m∗)2/ behavior. For even larger k, the imaginary
parts of the Goldstone and the amplitude branches stick at a
value −/2 determined by the relaxation rate of small wave-
vector density fluctuations  = γ (1 − Pth/P).

These results show how the effective 1D model is able
to reproduce the qualitative features of the edge Bogoliubov
modes and, in particular, to explain the ∼k2 behavior that
is crucial for the topological enhancement of coherence in
large lattices [15]. As a great advantage, the effective one-
dimensional theory introduced here for the specific case of

a HH model can be straightforwardly adapted to topological
lasers built on top of different topological models, e.g., as
the Haldane model considered in [20], by just plugging in
the suitable forms of the edge-mode dispersion ε(kx ) and of
the localization function �(kx ).

V. DYNAMICAL STABILITY OF GENERAL
TOPOLOGICAL LASER DEVICES

In the previous sections, we have studied the dispersion of
the collective excitations in the idealized case of a fast gain
medium and no optical nonlinearity besides gain saturation.
In particular, we have shown that no dynamical instabil-
ity occurs in this regime and the only slow dynamics is
the one of the Goldstone mode, intrinsically related to the
U(1) symmetry-breaking mechanism of laser operation. In
this section, we extend our study to a wider class of de-
vices where the carrier dynamics in the gain medium has a
slower timescale than the bare dynamics of the lasing mode
and/or the lattice resonators and/or the gain medium display
an intensity-dependent refractive index. Our investigation ex-
tends the pioneering analysis carried out in [16] and provides
physical insight into the different microscopic processes un-
derlying the instabilities predicted there.

As in the previous sections, our analysis will make a
combined use of full two-dimensional calculations, based
on a linearized theory that now includes the reservoir dy-
namics into the Bogoliubov formalism as summarized in
Appendix B, and of an effective one-dimensional theory that
generalizes Eq. (28) to the more complex configurations under
investigation here. This one-dimensional theory is based on
the following pair of evolution equations for the lasing field
and the reservoir density:

i∂tψ (x) =
{
ε(k̂x ) + g|ψ (x)|2

+ i

2
[�(k̂x )(R − 2igR)N (x) − γ ]

}
ψ (x), (31)

∂N (x)

∂t
= P − [γR + R|ψ (x)|2]N (x). (32)

A. Slow carrier dynamics

In this first section, we focus on the effect of a slow carrier
dynamics γR � γ on the dynamical stability of the monochro-
matic laser operation. For simplicity, we assume that no other
nonlinearity is present besides gain saturation, that is, we set
the intensity-dependent refractive index to zero, g = gR = 0.

The imaginary part of the dispersion of the collective exci-
tation modes is shown in Fig. 4(a) for the case of a moderately
slow carrier dynamics with γR/γ of the order of 1. The black
dots show the result of a full 2D calculation of the collective
excitation modes. Quite interestingly, also in this case the 1D
model (red lines) is able to recover the full 2D calculation in
a remarkably accurate way. While for relatively large wave
vectors k, the overall shape of the Goldstone and amplitude
branches is deeply changed due to the hybridization between
the edge and reservoir modes, the dispersion of the slowest
excitation modes at low k maintains the same structure.
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FIG. 4. (a) Imaginary part of the elementary excitation spectrum with a slow reservoir γR/γ = 2.5. Black (red) lines stand for results
computed with the full 2D (1D effective) model. (b) Comparison of the small-k scaling of the Goldstone branch for different values of the
reservoir speed, calculated with the 2D theory. Parameters: γ = 0.2J , P/Pth,1 = 2, g = gR = 0, kLas

x = −0.982, ny = 23.

This physics is displayed in better detail in Fig. 4(b). In-
dependently of the value of γR, down to the smallest values
of γR/γ , for sufficiently small k the Goldstone branch turns
slowly compared to the reservoir dynamics: in this window of
small-k values, the reservoir can thus be adiabatically elimi-
nated, and the dispersion recovers a γR and m∗ independent,
quadratic ∼k2 dependence, as discussed in the previous sec-
tion. Of course, the amplitude branch and the higher-k part of
the spectrum instead strongly depend on γR.

As a further consequence of the reduced value of γR/γ , in
Fig. 4(a) one can see how the counterpropagating edge mode
of wave vector k = π with opposite chirality gets closer to
the instability threshold. In the adiabatic limit discussed in
the previous section, we saw that its imaginary part was (in
absolute value) equal to /2, that is, /J = 0.0858 for the
parameters of Fig. 4(a). This value is way larger than the
numerically calculated value −Im[ωBog(π )] � 0.002J . Phys-
ically, this reduced value can be understood in terms of the
high frequency ≈2ωLas at which the lasing edge mode (of
frequency ωLas with respect to the bare frequency of the
sites) beats with the counterpropagating mode (of frequency
approximately −ωLas), much higher than the carrier relax-
ation rate γR. As a result, the fast oscillating interferences
are ineffective in quenching the effective gain experienced
by the counterpropagating mode. Using the linearized form
of the one-dimensional equation of motion, one sees that the
imaginary part of the counterpropagating excitations scales as

Im[ωBog(π )] = −α(1 + α)

2

(
γR

2ωLas

)2

γ , (33)

with the shorthand α = P/Pth − 1. Since ωLas is typically of
the order of J , the relaxation rate (33) of the counterpropagat-
ing mode turns out to be much smaller than not only the bare
cavity decay γ , but also the carrier one γR.

Even though, from a purely mathematical perspective, this
extremely slow decay time is not harmful to the dynamical
stability of the topolaser operation, in practice it may be
problematic for applications since it may dramatically slow
down the process of selecting one chiral edge mode over the
other. In the transient, the simultaneous presence of oscilla-
tions in both chiral modes results in a multimode emission or,

from a different point of view, a fast modulation of the laser
amplitude at a frequency 2ωLas. Beyond this, in Sec. V D,
we will see how the small value of the imaginary part of
the counterpropagating mode makes it susceptible to become
dynamically unstable once nonlinearities are included in the
model.

B. Optical nonlinearity

We now investigate the effect on the dynamical sta-
bility of a relatively small optical nonlinearity such that
g|ψ0

1 |2, gRN0 � J . Under this condition, the transverse profile
of the lasing edge mode remains similar in shape to the eigen-
states of the underlying conservative and linear HH model.
Since much of the interesting physics occurs on the slow
Goldstone mode, we focus our investigation on this branch
and, starting from the fast reservoir γR � γ limit, we adiabat-
ically eliminate the carrier dynamics.

The dispersion of the Goldstone and amplitude modes in
this regime is shown in Fig. 5. The amplitude mode is always

FIG. 5. Imaginary part of the elementary excitation spectrum
with small nonlinearities g|ψ0

1 |2, gRN0 � J in the adiabatic regime,
calculated with the 1D effective theory. Black (blue) corresponds
to the unstable geff/m∗ < 0 (stable geff/m∗ > 0) regime. Parameters:
kLas

x = −0.954, γ = 0.2J , P/Pth,1 = 2, g/β = 0.05J , gR = 0. For
these parameters, g�(kLas)|ψ ss

x |2 = 0.037J � J .
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FIG. 6. (a) Imaginary part of the elementary excitation spectrum with slow reservoir relaxation rate γR = 0.5γ for sizable nonlinear
interactions gR/R = −1.5 between the lasing mode and the carriers and g = 0. (b) Imaginary part of the elementary excitation spectrum in the
adiabatic regime for a strong repulsive optical nonlinearity g/β = 3.5J and gR = 0 and a pump strength P/Pth,1 = 1.25. For these parameters,
the lasing frequency is ωLas − ε(kLas

x ) ≈ g�(kLas )|ψ ss|2 ≈ 0.21J . Lasing occurs at kLas
x = −0.919 in (a) and kLas

x = −0.982 in (b); the black
lines are the result of numerical 2D calculations, while the red lines are the prediction of the effective 1D model. In both panels, γ = 0.2J .
ny = 31 for (a) and 23 for (b).

stable with an imaginary part − at k = 0. The stability of
the Goldstone mode depends instead on the sign of the nonlin-
earity. This effect can be understood in terms of the standard
theory of modulational instability in nonlinear optical media
[33] or in dilute Bose-Einstein condensates [17]. As in [22],
once the carrier dynamics has been adiabatically eliminated,
we can define an effective nonlinearity as

geff = g − gR(γ /γR)(Pth/P). (34)

If the effective nonlinearity has the same sign as the curvature
of the bare edge-mode dispersion (or, equivalently, of the
effective mass), the imaginary part of the collective mode
dispersion is negative and the system is dynamically stable.
Conversely, if the two quantities have opposite signs, the
imaginary part turns positive in a window of wave vectors
surrounding k = 0, signaling dynamical instability of the spa-
tially uniform solution.

Such behavior can be understood in the framework of the
one-dimensional theory (28) by including an effective interac-
tion term proportional to geff |ψ (x)|2. Setting, for simplicity,
λ(k) = 1, one finds the simple form

ω
Bog
+ (k) � vgk − i

geff |ψ ss|2
m∗

k2 + O(k3), (35)

from which it is easy to see how the sign of the imaginary
part at low k is determined by the sign of geff/m∗. As usual,
the observable consequence of this kind of instabilities is a
slow spatial modulation of the field amplitude with a wave
vector roughly determined by the position of the maximum of
the imaginary part and, eventually, its possible break-up into
a train of solitons.

While the sign of the nonlinearity is typically fixed by the
material properties of the device, the effective mass of the
HH dispersion has opposite sign for edge modes in either
the positive- or negative-frequency energy gap, as illustrated
in Fig. 1(b). This has the remarkable consequence that for a
given sign of the nonlinearity, topological lasing turns out to
be unstable in one of the two frequency gaps and dynamically

stable in the other gap. Here, interestingly, the dynamical sta-
bility is reinforced by the nonlinearity as signaled by the larger
value of the k2 coefficient of the Goldstone mode. In mathe-
matical terms, the different behavior of the edge states in the
two topological gaps can be understood as a consequence of
the breaking of the chiral symmetry given by Eq. (14) by the
optical nonlinearity.

C. Interplay of nonlinearity and slow carrier dynamics

The pioneering work [16] has predicted the occurrence of
unstable regimes when a slow carrier relaxation rate γR � γ is
combined with a sizable nonlinear refractive index due to the
carriers in the gain material, a quantity proportional to gRnR

in our model.
The imaginary part of the elementary excitation spectrum

in such a regime is plotted in Fig. 6(a) for the case of lasing
into a positive mass edge mode in the presence of a relatively
slow reservoir γR/γ = 0.5 and a negative carrier-induced non-
linearity gR < 0, g = 0. While for very small k the positive
effective nonlinearity (34) conspires with the positive effective
mass to give a stable Bogoliubov mode, a marked instability
occurs at slightly larger k (around |k| ∼ 0.2 for the parameters
in the figure) due to the hybridization of the laser and the car-
rier dynamics. Also in this case, the observable consequence
of the instability is the appearance of a spatial modulation of
the field amplitude, with an oscillation wave vector roughly
determined by the position of the maximum of the imaginary
part. Since this physics has a predominantly one-dimensional
character, it is well captured by the one-dimensional theory of
(31) and (32), as displayed by the red lines in Fig. 6(a). On the
other hand, the origin of the visible discrepancies at larger k
can be attributed to the distortion of the transverse field profile
from the one of the bare HH modes induced by the optical
nonlinearity. In particular, for this choice of parameters, the
modes with reverse chirality turn out feeling a lower gain than
predicted by the 1D model, and are therefore less prone to
dynamical instabilities.
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Remarkably, very similar behaviors were studied in the
context of polariton condensates [18,22,28] and physically
understood in terms of their interaction with the reservoir of
incoherent excitations feeding them: for a positive effective
mass, positive interactions with the reservoir gR > 0 corre-
spond to repulsive interactions between the condensate and
the slow incoherent reservoir. Therefore, a local increase of
the reservoir density pushes the condensate particles away,
creating a local depletion of their density. This depletion, in
turn, reduces the spatial hole-burning effect and leads to a
further increase of the reservoir density. This provides a pos-
itive feedback and makes the initial fluctuation grow further
in time. This process explains why the lowest-k Bogoliubov
modes are unstable in the m∗ > 0 and gR > 0 case. An oppo-
site behavior is found in the negative gR < 0 case considered
in Sec.V C or in the negative mass m∗ < 0 case considered in
[22]: in both of these cases, the interactions with the carriers
tend to further stabilize the laser operation against the slow-
est Bogoliubov modes. The situation of course changes for
modes at increasing k, whose frequency no longer satisfies the
adiabaticity condition underlying (34): for these, one can no
longer restrict to the effective interaction geff and an instability
indeed appears, as displayed in Fig. 6(a).

Quite interestingly, as observed in the polariton context
[22], this finite-wave-vector instability is tamed in the pres-
ence of a strong enough wave-vector dependence of the gain
away from the highest-gain condensate mode. In the case of
topolasers, this wave-vector dependence can be reinforced
with a suitable design of the underlying topological lattice,
e.g., via the edge localization function �(kx ).

D. Remarks on the general case

In the previous sections, we have seen instabilities oc-
curring either in the neighborhood of the lasing mode at
k ∼ 0 or on modes with opposite chirality at k ∼ π . This
appears to be a general feature and is confirmed by the cal-
culations for strong optical nonlinearities.

An example of such calculation is displayed in Fig. 6(b),
but the general trend remains the same for other choices of
parameters. Here, the nonlinear frequency shift gn is positive
and comparable to the hopping rate J and induces a significant
distortion on the edge modes. Still, the imaginary part remains
relatively large and negative throughout the Brillouin zone,
except for the regions around k = 0, π , where there exist edge
modes well localized on the edge with a strong overlap with
the gain medium. All other modes mostly reside in the bulk
of the lattice and thus feel a reduced gain, which ensures their
dynamical stability. In the k ∼ 0 region, the positive mass and
the positive nonlinear shift conspire to stabilize the Bogoli-
ubov mode via the same physical mechanism discussed in
Sec. V B in terms of the effective one-dimensional theory. In
the k ∼ π region, instead, the dynamical stability or instability
of the excitation modes depends in a less straightforward way
on the system parameters: in the specific case of Fig. 6(b),
for instance, single-mode lasing is stable, but easily turns
unstable as soon as the carrier relaxation rate is decreased or
the pump strength is increased. The experimental signature of
such instability would be the tendency of the device towards
a multimode operation with simultaneous emission in the two

counterpropagating edge modes. Further islands of dynamical
stability can then be found, scattered across the wide parame-
ter space of the problem.

In spite of these complications, some useful trends can be
identified in view of ensuring a stable topolaser operation. The
arguments in Sec. V B can be used to exploit the nonlinearity
to stabilize excitation modes at small k and avoid modula-
tional instabilities. Further stabilization against the processes
discussed in Sec. V C can be obtained with a suitable de-
sign of the lattice to further reinforce the k dependence of
the edge-mode localization, as discussed in the earlier parts
of this work, and/or of the Q factor of the edge modes as
discussed in [34].

Guaranteeing the stability of the counterpropagating
modes at k ∼ π and avoiding multimode laser operation is
instead a more subtle issue as its (typically small) imaginary
part is strongly affected by the slow carrier dynamics, as
pointed out in Sec. V A, and strongly depends on the mi-
croscopic distortion of the edge-mode wave function by gain
and nonlinearities. While these features are not easily con-
trolled without a detailed microscopic modeling of the device,
some general trends can nevertheless be extracted: the coun-
terpropagating modes lying in a different topological gap are
well separated in frequency and therefore can be suppressed
through a relatively weak frequency dependence of gain [35].
An even more drastic strategy would be to adopt an underlying
topological model that displays a single topological gap, such
as the Haldane model considered in [20].

VI. CONCLUSION

In this work, we have presented a general theory of the
fluctuation dynamics of a topological laser device. By extend-
ing the Bogoliubov theory of the collective excitations on top
of a dilute condensate to the case of a photonic topological
Harper-Hofstadter model with gain and losses, we calculated
the spectrum of collective excitation modes around the lasing
steady state and identified different physical processes lead-
ing to dynamical instability. The numerical results obtained
from the full 2D model were then analytically interpreted in
terms of a simple effective 1D theory which only requires the
knowledge of the edge-mode dispersion and of their spatial
localization on the edge.

While a stable topolaser operation is recovered for the
class-A laser models with no optical nonlinearities consid-
ered in [15,19,20], more complex phenomena are found for
class-B models featuring a slow carrier dynamics and/or
in the presence of an intensity-dependent refractive index.
Several processes potentially leading to instabilities were
identified and explained in physical terms such as long-
wavelength modulational instabilities or multimode lasing
into the counterpropagating edge mode with opposite chi-
rality. This provides physical insight into the instabilities
originally predicted with numerical tools in [16]. Based on our
understanding of the various instability processes, strategies
to reinforce the stability of the topolaser operation are finally
suggested.

As future perspectives for further work, our study has
already provided a microscopic support to the recently
published theory of the long-distance, late-time coherence
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properties of the emission of a topological laser device [15].
Concerning the recent experimental realizations of topolog-
ical lasers, we agree that a quantitative study of actual
semiconductor laser devices [11–13] may require a more so-
phisticated modeling of the gain medium, which goes beyond
the scope of this work, but we anticipate that our method
should be quantitatively accurate for the specific case of topo-
logical exciton-polariton condensates, which are presently
under active study [23]. From a conceptual perspective, we
also expect that our framework will be a useful starting point
for qualitative considerations and theoretical arguments.
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APPENDIX A: FIRST-ORDER CORRECTIONS IN γ/J

In this Appendix, we briefly inspect the first-order γ /J
corrections to the ansatz (20), (23), and (24) for the lasing
steady state ψ0

y for vanishing nonlinearities g = gR = 0. We
focus on the region in the vicinity of the edge, namely, for
y = 1, 2. Numerical results for the steady state suggest that

ψ0
1 � Aφ1, (A1)

ψ0
2 � Aφ2 + iA

γ

2J

1 − |φ1|2
φ1

+ O

[(
γ

J

)2]
. (A2)

While the conservative eigenstate {φy} has purely real entries
indicating the absence of particle flux in the transverse direc-
tion orthogonal to the edge, a nontrivial phase appears in the
driven-dissipative steady state due to the first-order correction
in γ /J .

This interesting feature can be understood in terms of parti-
cle conservation at the different sites. The total radiative losses

of the lasing mode (per unit length along x) are given by

γ
∑

y

∣∣ψ0
y

∣∣2 � γ A2, (A3)

where the second equality holds up to second-order correc-
tions. All gain is concentrated on the y = 1 sites, while the
contribution of this sites to the losses,

γ
∣∣ψ0

1

∣∣ = γ A2
∣∣φ0

1

∣∣2
, (A4)

is only partial. The overall balance between gain and losses
then requires the presence of some current flowing out of the
edge, namely, from y = 1 to y = 2. This current is exactly
provided by the first-order correction included in Eq. (A2):
even if this term is of the order of γ /J , the associated current
contains the tunneling rate J and is of the order of γ . Including
this current, the total rate of particle escape from the y = 1
sites recovers that of the whole lattice γ A2|φ1|2.

APPENDIX B: TWO-DIMENSIONAL BOGOLIUBOV
THEORY INCLUDING THE CARRIER DYNAMICS

Including carrier dynamics, the ansatz (15) becomes

ψx,y(t ) = [
ψ0

y + δψx,y(t )
]

e−iωLast+ikLas
x x,

Nx,y(t ) = N0
y + δNx,y(t ). (B1)

In Fourier space along the x axis and time, the correspond-
ing system of linear equations for δψk,y and δNk,y reads, for
k = kx − kLas

x ,

ωBog(k)δψk,y = (H δψ )k,y + g
(
ψ0

y

)2
δψ∗

y,−k + [
2g

∣∣ψ0
y

∣∣2

+ gRN0
y − ωLas + i

(
RN0

y − γ
)]

δψy,k

+ ψ0
y [iR + gR]δNy,k, (B2)

ωBog(k)δNk,y = −i
(
γR + R

∣∣ψ0
y

∣∣2)
δNk,y

− RN0
y

(
ψ0

y δψ∗
−k,y + ψ0∗

y δψk,y
)
, (B3)

to be supplemented for δψ∗
k,y by the complex conjugate of the

first equation.
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