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ABSTRACT
We develop a semiclassical theory of laser oscillation into a chiral edge state of a topological photonic system endowed with a frequency-
dependent gain. As an archetypal model of this physics, we consider a Harper–Hofstadter lattice embedding population-inverted, two-
level atoms as a gain material. We show that a suitable design of the spatial distribution of gain and its spectral shape provides flexible
mode-selection mechanisms that can stabilize single-mode lasing into an edge state. Implications of our results for recent experiments are
outlined.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041124

I. INTRODUCTION

Topological lasers (in short, topolasers) are one of the most
promising applications of topological photonics. Such devices are
obtained by including a suitable gain material in a topological system
so as to induce laser oscillation in a topological edge state.1,2 Stim-
ulated by pioneering theoretical proposals,3–7 experimental realiza-
tions were first reported for the zero-dimensional edge states of
one-dimensional arrays.8–12 Extension to nanolasers based on zero-
dimensional corner states of two-dimensional lattices was reported
in Refs. 13 and 14.

Scaling up in dimension, the crucial advantages for opto-
electronic applications offered by topological lasing into the one-
dimensional edge modes of a two-dimensional lattice have been
theoretically highlighted:3–5,15,16 the topological protection of chi-
rally propagating one-dimensional edge modes appears as a promis-
ing strategy toward an efficient phase-locking of the laser oscil-
lation at the different sites. In this way, gain can be distributed
over a large number of sites while maintaining a globally stable
single-mode coherent emission, which is very promising to realize

high-power coherent sources. Experiments along these lines were
reported shortly afterward using photonic crystals under a strong
magnetic field17 and arrays of coupled ring microcavities,18 fol-
lowed by more recent valley-Hall quantum cascade19 and telecom-
wavelength20 lasers.

These experimental advances have stimulated an active theo-
retical research to characterize the peculiar properties of the novel
devices.16,21–23 Whereas the experiments in Refs. 17 and 18 have
shown a clean single-mode emission from topolasers, the possibility
of secondary instabilities as a result of the interplay of optical non-
linearities and slow carrier dynamics has been theoretically pointed
out in Ref. 21. A semiclassical study of the novel features introduced
by the chirality of the lasing state was reported in Refs. 23 and 24.
Extensive theoretical studies based on a stochastic approach have
anticipated the robustness of the long-time coherence against static
disorder by including quantum and thermal fluctuations into an
idealized model of topolaser.16 Finally, the specific features of
the weaker topologically protected but experimentally much less
demanding topological lasing in valley Hall systems have been
theoretically discussed in Refs. 25 and 26.
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In this work, we investigate the various mode-selection mech-
anisms that determine whether a topolaser device is going to lase
in an edge state or in a bulk state. Rather than dealing with the
complex nonlinear dynamics of the lasing state,16,21,23 we focus our
attention on identifying the mode that is responsible for the first
instability of the vacuum state. This is a common strategy in laser
physics27 and typically provides a good intuition on the system
behavior not too far above threshold. For instance, if different modes
of the laser resonator have different spatial profiles, a specific mode
can be selected just by increasing its spatial overlap with the gain
material. In the context of topolasing, a suitable spatial distribu-
tion of gain/losses was exploited in Ref. 12 to favor laser operation
in a protected zero mode of a one-dimensional lattice. Theoreti-
cal investigations on the impact of nonlinearities on such spatial
mode-selection mechanisms and on possible transition to complex
regimes with time-dependent power oscillations were reported in
Ref. 22.

Here, we go beyond these works by including the additional
spectral mode-selection mechanism coming from the frequency
dependence of gain. In its simplest formulation, spectral mode-
selection allows us to suppress competing cavity modes that are
well separated in frequency by tuning a narrowband gain mate-
rial in the spectral vicinity of the desired mode. In particular, we
take motivation from the recent topolaser experiment in Ref. 17 to
investigate how a subtle combination of spectral and spatial mode-
selection mechanisms can conspire to stabilize laser oscillation into
a chiral edge state. As an important outcome of our analysis, we
point out a possible mechanism for the still unexplained exper-
imental observation17 of single-mode emission under a homoge-
neous pump with no need of concentrating pumping along the
edge as it was instead done in other topolaser realizations, e.g., in
Ref. 18.

From a conceptual perspective, topological lasing under spa-
tially homogeneous pumps is of special interest as it allows for a
direct connection to the general concepts of non-Hermitian topol-
ogy:2,28,29 in such a geometry, each region maintains, in fact, its
(discrete) translational invariance. Bulk bands can thus be clas-
sified in terms of suitably generalized non-Hermitian topological
invariants including the effect of gain and losses within the unit
cell, and the value of the topological invariants can be then con-
nected to the presence and the properties of edge states at the
boundaries.

The structure of this article is the following. In Sec. II, we intro-
duce the physical system under investigation, namely, a photonic
Harper–Hofstadter lattice embedding population-inverted two-level
atoms (TLAs) as gain medium, and we develop the theoretical
model based on a Bloch–Harper–Hofstadter set of equations. In
Sec. III, we show how the use of a narrowband gain stabilizes the
edge mode lasing even when the gain material is uniformly dis-
tributed across the whole system. In Sec. IV, we show how a suit-
able combination of spectral and spatial selection mechanisms is
able to stabilize the edge mode lasing under weak conditions on
the gain lineshape and its spatial localization. The experimental
implications of our results are discussed in Sec. V. Conclusions are
finally drawn in Sec. VI. Additional details on the derivation of the
theoretical models, the topological lasing features, and our spatial-
spectral mode-selection mechanism are given in the supplementary
material.

II. THE THEORETICAL FRAMEWORK
In this section, we summarize the theoretical model used

for our calculations. As an archetypal model, we consider
a photonic Harper–Hofstadter lattice where optical gain is
introduced by including population-inverted two-level atoms at
each site. For a complete derivation of the equations of this
Bloch–Harper–Hofstadter model, we refer the interested reader to
Sec. S.1 of the supplementary material.

Harper–Hofstadter lattices were realized in integrated pho-
tonic devices by engineering the hopping links between neighboring
microring resonators30 and, in this form, were used in the topo-
laser experiment of Ref. 18. Even though our study makes use of the
Harper–Hofstadter model as a paradigmatic example of the topo-
logical lattice, our conclusions extend to a wide variety of discrete or
continuous topological photonics systems1 and, in particular, help
shining light on the photonic crystal experiment of Ref. 17.

In the recent experimental implementations, gain is obtained
by inserting optically pumped quantum wells17,18 or electrically
driven quantum cascade heterostructures19 into a solid-state topo-
logical lattice. Here, we will not dwell into the complexities of the
microscopic physics of specific gain materials, but we will base
our discussion on a simplest description in terms of population-
inverted two-level atoms. Despite its simplicity, this approach pro-
vides a reasonably accurate effective description of a wide range
of actual media and, in particular, is able to correctly include
the frequency dependence of gain, which is the focus of our
analysis.

A. The Bloch–Harper–Hofstadter model
We consider a two-dimensional Harper–Hofstadter lattice1,31

where neighboring sites are connected through a hopping Hamilto-
nian with a non-trivial hopping phase. In the Landau gauge, this can
be written as

Hbare =
̵hωcav∑

m,n
a†

m,nam,n − J∑
m,n
{a†

m,nam+1,n + e−i2πϑma†
m,nam,n+1 + h.c.},

(1)

where a†
m,n (am,n) is the operator that creates (annihilates) a photon

at the (m, n) site. All sites are assumed to have a bare photon fre-
quency ωcav, the real and positive parameter J quantifies the hopping
strength, and ϑ = 1/4 is the flux per plaquette of the synthetic gauge
field that is responsible for the topological properties.

The topological features are easily understood by considering a
strip geometry with periodic boundary conditions along one direc-
tion (y) and open boundary conditions along the other (x). As shown
in the right panel of Fig. 1, the energy dispersion in the first Bril-
louin zone ky ∈ [−π, π] shows four bulk bands: the central two bands
touch at Dirac points, while the two external ones are separated
by finite bandgaps, symmetrically located at positive and negative
energies. The Chern numbers of the bands are, from bottom to
top, C = −1, +2, −1, where the two central bands have been con-
sidered as a single band in the calculation of the Chern number
because of the degeneracy in the Dirac points. In agreement with
these Chern numbers, each bandgap hosts one chiral edge mode
and the edge modes in each topological gap have opposite chirali-
ties, the one in the negative (positive) energy gap propagating in the
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FIG. 1. Left and central panels: scheme of a Harper–Hofstadter lattice consisting of an array of photonic cavities embedding two-level atoms (TLAs). The energy difference
between the two atomic levels is ωeg; pumping of the atoms from ∣g⟩ to ∣e⟩ occurs at a rate γg, while their spontaneous decay from ∣e⟩ to ∣g⟩ occurs at a rate γe. All cavities
decay at an equal loss rate Γ. The synthetic magnetic field is included as a non-trivial hopping phase: a photon that hops around a plaquette (orange arrows) picks up
an extra phase 2πϑ due the synthetic magnetic flux, in our case ϑ = 1/4. Right panel: plot of the energy dispersion for a ϑ = 1/4 Harper–Hofstadter lattice with periodic
boundary conditions along y and Nx = 39 sites with open boundary conditions along x. The gray bands correspond to bulk states. The colorful lines indicate the topologically
protected edge states, with red (blue) color indicating localization on the right (left) edge.

counter-clockwise (clockwise) direction. For the strip geometry con-
sidered in this plot, two edge modes are present in each gap, unidi-
rectionally propagating in opposite directions along y. Their topo-
logical protection from disorder stems from their spatial localiza-
tion on opposite x = 1, Nx edges of the lattice, which suppresses
back-scattering.

As sketched in Fig. 1, each site is modeled as a photonic res-
onator of frequency ωcav and decay rate Γ in which a photon is
created (annihilated) by a† (a). Each resonator is provided with a
frequency-dependent gain medium, which is modeled here as a col-
lection of N population-inverted two-level atoms (TLAs). At each
site, the dynamics of the atoms forming the gain medium is then
described by the following Hamiltonian:

Hat,N =
N

∑

j=1
H(j)at,1 =

N

∑

j=1
{

1
2
̵hωegσz

j +
̵hg(σ+j a + a†σ−j )}, (2)

where ωeg = ωe − ωg is the energy difference between the atomic
levels, the light–atom coupling g is assumed to be equal for all
j = 1, . . . , N atoms and, for each atom, σ+ = ∣e⟩⟨g∣ and σ− = (σ+)†
= ∣g⟩⟨e∣ are the raising and lowering operators between the ground
∣g⟩ and excited ∣e⟩ states. Analogously, the atomic population differ-
ence on each atom is quantified by the σz

= ∣e⟩⟨e∣ − ∣g⟩⟨g∣ operator.
Each TLA is incoherently pumped from the ground to the excited
state at a pumping rate γg , while the reverse spontaneous decay from
∣e⟩ to ∣g⟩ occurs at a rate γe.

Under a mean-field approximation, we replace the photon
field operators am,n with their classical C-number expectation values
αm,n = ⟨am,n⟩ and we assume the atomic density matrix to have a fac-
torized form. The one-atom Hamiltonian terms H(j)at,1 ≡ Hat,1 and the
one-atom density matrices ρat are then equal for all atoms at a given
site, and their dynamics is captured by a Lindblad master equation
of the form

dρat

dt
= −

i
̵h
[Hat,1, ρat] + ∑

s=e,g
γs(LsρatL†

s −
1
2
{L†

s Ls, ρat}), (3)

where the first term gives the coherent evolution induced by the
atom-field dynamics in (2) and Le = ∣g⟩⟨e∣ = σ− and Lg = ∣e⟩⟨g∣ = σ+
are the jump operators for the decay and pumping processes.

Projecting (2) and (3) onto the atomic ground and excited
states then recovers the Bloch equations of the semiclassical the-
ory of lasers.32,33 Together with the field dynamics determined by
the hopping Hamiltonian (1), these equations constitute the full set
of equations of our Bloch–Harper–Hofstadter model. Measuring all
energies and times in units of J and J−1, respectively, and setting the
frequency zero at the empty cavity frequency ωcav, these equations
have the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

ρ̇m,n
ee = γgρm,n

gg − γeρm,n
ee + i(αm,nρm,n

ge − α∗m,nρm,n
eg ),

ρ̇m,n
gg = γeρm,n

ee − γgρm,n
gg − i(αm,nρm,n

ge − α∗m,nρm,n
eg ),

ρ̇m,n
eg = −i(ωeg − iγ)ρm,n

eg − iαm,n(ρm,n
ee − ρm,n

gg ),

α̇m,n = − Γαm,n + iGρm,n
eg + i(αm+1,n + αm−1,n

+ e−i2πϑmαm,n+1 + e+i2πϑmαm,n−1),

(4)

where ρm,n
ee (ρm,n

gg = 1 − ρm,n
ee ) is the average atomic population of the

excited (ground) state of the atoms located at site (m, n) and ρm,n
eg

is the corresponding coherence. In the following, we will assume,
for simplicity, that no additional decay channel acts on the atomic
coherence ρeg in addition to the unavoidable ones coming from
pumping and decay, γ = γeg = (γg + γe)/2.

The efficiency of the gain process enters via the G ≑ g2N cou-
pling strength, proportional to the number of atoms N per site and
to the square of the elementary light–atom coupling g. Indicating
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with V the effective field volume at each site, the light–atom cou-
pling scales as usual as V−1/2 (see Sec. S.1 of the supplementary
material), which makes G proportional to the atomic density N/V .
If a real atomic gas is used as the gain material, the gain strength can
be tuned by changing the density of the gas. In a solid state pho-
tonic crystal where the TLAs are used to model a more complex
electronic dynamics in the material, the same effect can be achieved
by varying the filling factor within the unit cell and/or the overlap
of the Bloch mode with the gain material. To keep our analysis as
simple as possible, in the following we will use G as the parameter
controlling the strength of the gain in the different regions of space.
This choice automatically includes the possibility of having different
atomic densities in the different regions; compared to the pumping
rate γg , it also allows us to simplify the presentation by avoiding the
complications due to the simultaneous dependence of several other
parameters on γg .

The numerical results that are presented in Secs. III and IV were
obtained by numerically simulating the system evolution described
by Eq. (4) via a standard fourth order Runge–Kutta integration
scheme that provides direct access to time-dependent quantities.
The steady-state values of observable are extracted by running the
time-dependent simulations up to very long times. The lasing fre-
quency and the power spectral density are obtained by Fourier
transform of the late-time temporal evolution of the relevant field
amplitudes.

B. Frequency-dependent gain
The peculiar features of the frequency-dependent gain can be

simply understood by looking at the laser operation in a single site
geometry. Indicating with ωL the lasing frequency, the steady-state
is determined by the late-time behavior of the solution to the Bloch
equations (4) in the single-site case.

In this limit, the atomic populations tend to have a constant
value, while both the coherence ρeg and the field amplitude α keep
oscillating at frequency ωL. The explicit expressions for the steady-
state atomic quantities are given in the supplementary material.
The steady-state field amplitude is instead α(t) = α̃ e−iωLt with the
amplitude α̃ satisfying the gain/loss balance equation

P
1 + β∣α̃∣2

= Γ, (5)

with the effective pump strength

P = G(
γ

(ωeg − ωL)2
+ γ2 )(

γg − γe

γg + γe
) (6)

and the saturation coefficient

β = 2
g2

γeg
(

γ
(ωeg − ωL)2

+ γ2 ). (7)

Equation (5) is formally analogous to the one of a broadband
saturable gain considered in Refs. 5 and 23, with the key differ-
ence that the parameters P, β are here frequency-dependent. In
particular, the effective pump strength P involves a Lorentzian
factor γ/[(ωeg − ωL)

2
+ γ2
] accounting for the non-trivial gain

spectrum: this is centered at ωeg and has a HWHM set by the atomic
decoherence rate γ.

This frequency-dependent gain directly reflects into an anal-
ogous dependence of the laser threshold. In a single-site geometry,
this is immediately obtained from Eqs. (5) and (6) as the lowest value
of G for which (unsaturated) gain exceeds losses P ≥ Γ. This leads to
the threshold condition

G > Gres,0

⎡
⎢
⎢
⎢
⎢
⎣

1 + (
ωL − ωeg

γ
)

2⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where

Gres,0 ≑
2γegγΓ
γg − γe

(9)

is the single-cavity lasing threshold exactly on resonance, that is, for
ωL = ωeg . As expected, the threshold is minimum when laser opera-
tion occurs on resonance with the population-inverted atoms. Then,
it increases quadratically with the detuning ωL − ωeg : the faster the
atomic decoherence rate γ, the weaker this increase. In the follow-
ing, we will exploit this frequency dependence of the threshold as a
way to select the desired mode for lasing.

III. NARROWBAND GAIN
In Sec. II B, we have restricted our attention to the single-site

case. This provides us the conceptual building blocks to understand
laser operation in a topological lattice. As a first step in this direction,
in this section, we consider the simplest case where the narrowband
gain spectrum is concentrated within a topological gap. In contrast
to the chaotic multi-mode emission found in Ref. 23 for the extreme
broadband gain, here we show that such narrowband gain can lead to
a stable topological lasing even under a spatially uniform pumping.
While such a narrowband gain might not be the technologically sim-
plest option for practical devices, a detailed discussion of its features
is an interesting first step to validate our Bloch–Harper–Hofstadter
model and understand its behavior in the different regimes. In addi-
tion to that, because of mode-pulling effects, an interesting non-
trivial relation is found between the lasing frequency and the bare
frequencies of the discrete set of edge modes.

A. Single-mode topological laser emission
This narrowband gain configuration can be obtained by consid-

ering the Bloch–Harper–Hofstadter model introduced in Sec. II A
and tuning the atomic frequency ωeg in the middle of the topological
bandgap with a gain linewidth γ much smaller than the gap width,
as sketched in Fig. 2(c). In this way, the frequency dependence of
gain strongly increases the effective threshold for laser operation in
the off-resonant bulk band states, while the one for edge state lasing
remains almost unaffected.

Laser operation in this regime is illustrated in Figs. 2(a) and
2(b). Emission into the edge state is stable and monochromatic
and remains so up to high pump strengths well above the laser
threshold.34 Quite interestingly, such monochromatic single-mode
emission is not restricted to small lattice sizes where a single
eigenstate—classified by ky for the strip geometry of Fig. 2(c) or
by the winding number around the lattice for the geometry of
Fig. 2(a)—falls within the gain bandwidth: as it was pointed out in
Ref. 23 for the extreme broadband gain case, the high spatial overlap
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FIG. 2. (a) Steady state emission of a 15 × 15 lattice, uniformly pumped on all sites with a narrowband gain of strength G/Gres,0 = 3. The atomic transition frequency is
ωeg = 1.9. For these parameters, lasing is found to occur at ω = 1.87. (b) Spatially averaged emitted intensity as a function of the gain strength G, showing the typical
linear behavior after the lasing threshold. (c) Band structure of a Harper–Hofstadter lattice with PBCs in the y-direction but finite in the x-direction Nx = 39. The color scale
from blue to red quantifies the localization of each mode from left to right in the x-direction, while the dashed line indicates the atomic resonance ωeg. The narrowband
gain used for the simulations in the panels above is represented as a Lorentzian in the frequency domain, centered at ωeg and with a FWHM of 2γ = 0.2, i.e., roughly
13% of the topological bandgap. (d) Numerically observed lasing frequency (blue dots) as a function of the atomic resonance frequency ωeg. Each slant step is fitted with
a black dashed line with equation ωL =

1
2

ωeg + b. The light gray dashed-dotted lines mark the lasing frequency values for which ωL = ωeg = ω0 [see (10)], while the red
line represents the approximated curve ωL = ωeg. The simulations have been performed by numerically integrating the Bloch–Harper–Hofstadter motion equations (4) up
to a time T = 500 Γ−1; the other parameters are the same as in the left panels. All frequencies are measured in units of the hopping J and the zero is at the bare cavity
frequency ωcav. The lasing frequency is extracted from the power spectral density of the emission that is obtained by a temporal Fourier transform of the light field amplitude
in the latest ΔT = 150 Γ−1 of the evolution.

of different edge states provides, in fact, a very efficient mode compe-
tition mechanism32 eventually suppressing simultaneous laser oper-
ation in multiple modes. The dynamical stability of the single mode
emission was confirmed by the Bogoliubov analysis in Ref. 35. A
further illustration of the dynamics of this mode-competition pro-
cess over time is provided in Sec. S.3 of the supplementary material
where we display a time-frequency representation of the lasing pro-
cess. As usual, the choice of the specific lasing mode is stochastically
determined at each instance of lasing by the initial conditions and
the noise. Still, for sufficiently narrowband gain, the resulting prob-
ability distribution for lasing in different modes will be very peaked
on the most likely mode.

Of course, this monochromatic emission only holds up to mod-
erate pump strengths at which only the quasi-resonant edge modes
experience an effective gain. At very high pump strength, also the
bulk modes go above threshold and the dynamics recovers the
chaotic behavior found in Ref. 23 for a broadband gain distributed
in the whole system.

B. Mode-pulling effects
In contrast to the broadband gain case where the laser fre-

quency ωL is typically locked to the bare mode frequency ω0, for
a narrowband gain, a sizable mode-pulling effect can occur on the
laser frequency.33 The lasing frequency results then from a weighted

average of the atomic resonance ωeg and the bare mode frequency ω0
via the mode pulling formula

ωL =
ω0 + Sωeg

1 + S
, (10)

where S = Γ/γ is the so-called the stabilization factor. When S≪ 1
mode-pulling effects are negligible and ωL = ω0, where ω0 is the
frequency of the corresponding lattice mode selected by the las-
ing process. For equal Γ = γ, the stabilization factor is S = 1 and
the mode-pulling effect becomes a simple average. Physically, this
mode-pulling effect can be understood as a result of the refrac-
tive index change that is naturally associated with the gain via
Kramers–Kronig causality relations: as usual, narrow resonances are
responsible for quantitatively larger changes of the refractive index
in their spectral neighborhood.

Let us explore the impact of this effect in our case of topo-
logical laser operation for a narrowband gain centered inside the
topological bandgap, thus perfectly overlapping with the edge state
dispersion. The blue dots in Fig. 2(d) show the numerical predic-
tion for the steady-state lasing frequency as a function of the atomic
resonance position ωeg . This plot illustrates an interesting interplay
of mode pulling with the intrinsic discreteness of the edge state.23

Given the finite size of the system, the edge state consists, in fact, of a
sequence of discrete states classified by the winding number around
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the perimeter of our square sample. In Fig. 2(d), the frequencies of
such states are indicated by the horizontal dashed-dotted lines.

When mode-pulling effects are negligible, for instance, in a
broadband gain case, the system lases at the frequency of the edge
mode that is closest to the resonance ωeg for which gain is the
strongest. In our plot, this would correspond to a staircase of flat
steps separated by a spacing Δω = 2πv g/L determined by the overall
length L of the system edge and the group velocity v g of the edge
mode.

For our narrowband gain, laser operation still occurs in the dis-
crete mode that is closest to ωeg , but mode-pulling effects make the
steps to have a finite slope instead of being flat. Inserting the fre-
quency of the selected edge state as the cavity frequency ω0 in (10)
predicts a value S

1+S for the slope. In the figure, we have taken γ = Γ,
so the stabilization factor is S = 1 and the expected slope is 1/2. This
value (black dashed lines) is in perfect agreement with the numerical
findings.

IV. BROADBAND GAIN
In Sec. III, we have seen an efficient scheme to stabilize topo-

laser operation with a uniformly distributed gain by spectrally con-
centrating the gain spectrum in the topological gap. While concep-
tually interesting, this scheme is hardly useful in practical semicon-
ductor systems, where the gain linewidth is typically comparable if
not larger than the width of the topological bandgaps so that an effi-
cient spectral selection of the edge mode from the neighboring bulk
modes is hardly obtained.

In this section, we will explore a more sophisticated scheme
that is able to stabilize topological lasing in a much wider range of
parameters of potential technological relevance. The configuration
we consider is inspired by the photonic crystal experiment in Ref. 17
where the topological bandgap is orders of magnitude narrower that
the gain linewidth. One of the aims of our work is to provide theo-
retical insight into the observed single-mode topolaser emission of
this experiment.

A sketch of the configuration under examination is shown in
Fig. 3(d). As in the experiment,17 we consider a central region, which
has a narrow topological gap, surrounded by a region with a much
wider and topologically trivial gap. Chiral boundary modes are local-
ized at the interface between the two regions. We also assume that
the gain bandwidth is much larger than the narrow topological gap
but comparable to the large trivial gap, as in the experiment, and
that the gain is stronger in the trivial region than in the topological
region. As a consequence, even though the gain material is pumped
in a globally spatially uniform fashion, we can expect clear topolaser
operation in the edge states that partially penetrate into the trivial
region with stronger gain, while lasing into the bulk states of the triv-
ial region is suppressed by their detuning from the gain bandwidth.
In this section, we explain in detail how this idea works.

We first explain how we model a narrow and isolated topo-
logical gap in the central region. We start from the ϑ = 1/4
Harper–Hofstadter lattice, which contains multiple topological
bandgaps with topological invariants adding up to zero. We want
to isolate one topological bandgap from these multiple gaps. To
this end, we add a checkerboard-shaped on-site frequency detun-
ing ±Δ: the frequencies of the (m, n) sites are thus alternated and

equal to ωcav + Δ ⋅ (−1)m+n. The photonic bands of such a bipar-
tite Harper–Hofstadter model are shown in panel (a) of Fig. 3:
because of the checkerboard detuning, the Brillouin zone is reduced
to ky ∈ [−

π
2 , π

2 ] and the Dirac touching points between the middle
two bands open into a trivial gap with size ∼ 2Δ. In agreement with
the sequence−1,+1,+1,−1 of Chern numbers of the different bands,
the two (small) gaps between the lower two bands and the upper two
bands maintain their topological nature visible in the corresponding
edge states. In what follows, we focus on the topological bandgap of
the two upper bands; the gain spectrum is centered around the fre-
quency of the two upper bands. The two lower bands are, instead,
off-resonant and are not relevant in the laser operation and the
discussion below.

Next, we explain how we prepare the surrounding region with a
wide trivial gap. We again start from the ϑ = 1/4 Harper–Hofstadter
model and add a checkerboard-shaped detuning Δtrivial, which is
larger than ±Δ in the topological region. We add a global shift of
all site frequencies by ωtrivial so that the large topologically trivial
gap between the middle two bands is centered around the two upper
bands of the topological region. The corresponding photonic bands
are shown in panel (b). Although the two upper and two lower bands
have narrow topological gaps, they are pushed away by the large
Δtrivial, and thus, we can focus on the effect of the wide trivial gap
between the middle two bands. We call this surrounding region a
“trivial” region in this sense. The gain spectrum, which is indicated
by the yellow shading in panels (a) and (b), is centered at the middle
of the wide trivial gap and completely encompasses the topological
gap in the central region.

The gain strength in the surrounding trivial region, Gtrivial, can
be reinforced either by locally increasing the pumping strength or,
alternatively, by keeping a spatially uniform pumping but increasing
the density of the gain material with respect to the central region,
as discussed in Sec. II A. Focusing on the latter case, which appears
relevant for the experiment in Ref. 17, we can write Gtrivial = G ⋅ d,
where d can be interpreted as the effective density of the gain mate-
rial in the surrounding region relative to the central region, and treat
G/Gres,0 as a global measure of the uniformly distributed pumping
strength in units of the single-resonator resonant threshold.

The results of the numerical simulations are summarized in
Fig. 3, where we show a phase diagram of the different regimes of
laser operation as a function of the relative effective density of the
gain material in the surrounding region d = Gtrivial/G and of the
pumping strength in the central topological region in units of the
resonant, single-site threshold, G/Gres,0.

When the surrounding trivial region is purely passive and does
not display any gain [d = 0, Figs. 3(i) and 3(j)], the system is almost
equivalent to a bipartite 15 × 15 lattice without the surrounding
region. We, therefore, expect the system to only lase above the res-
onant single-site lasing threshold, G/Gres,0 = 1, as shown by the red
region at the bottom of the phase diagram. Since the gain is effec-
tively broadband with respect to the upper pair of photonic bands
in the central region, both bulk and boundary modes equally par-
ticipate in the lasing process, forbidding a stable topological laser
operation [panel (j)]. Compared to the bulk states, boundary states
are even slightly disfavored by the worse spectral overlap with the
gain spectrum and by their evanescent tail that penetrates into the
surrounding trivial region and reduces the spatial overlap with the
gain region.
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FIG. 3. Result of simulations performed on a 25 × 25 lattice with a five-site thick surrounding region. (a) and (b) Band structure for the proposed broadband scheme, with
a geometry schematically depicted in panel (d). The central region [panel (a)] is a bipartite ϑ = 1/4 Harper–Hofstadter lattice with checkerboard detuning Δ = 4.0, while
the surrounding region [panel (b)] has the same geometry with a larger checkerboard detuning Δtrivial = 7.0 and a global detuning ωtrivial = 4.65 (red dotted line). The gain
spectrum is centered at ωeg = 4.85 (blue dashed line) and has a FWHM linewidth 2γ = 5.2 (yellow shading). The relative strength of gain on the two sides depends on
d = Gtrivial/G: for the specific case illustrated in the figure, the taller gain spectrum in panel (b) refers to a d > 1 case of stronger gain in the trivial region. The gray shaded
areas indicate ky -vectors outside the reduced Brillouin zone. For these parameters, the gain linewidth is around 8.2 times larger than the width of the topological bandgap
of the central region and around 37% of the width of the trivial bandgap in the surrounding region. It is around 63 times wider than the one considered in Fig. 2. (c) Phase
diagram of the different lasing regimes as a function of the overall pumping strength G/Gres,0 and of the relative effective density of the gain material of the surrounding region
d = Gtrivial/G for the same lattice parameters used in the dispersion plots shown in the top left panels. The gray color indicates no lasing; the blue color indicates lasing from
the topological edge mode; the red color indicates lasing from the non-topological portion of the central region; and the yellow color indicates lasing from the surrounding
region. Fading to white indicates the coexistence of multiple phases. The thin dashed black lines indicate the G/Gres,0 = 1 and d = 1 values. The solid and dotted-dashed
black transition lines between different phases are analytically predicted via the prescriptions in Sec. S.5 of the supplementary material. The six yellow stars have a one-to-one
correspondence with panels (e)–(j) presented on the right, showing sample snapshots of the real-space emitted intensity at the end of the integration time. The first, second,
and third rows from the top are for decreasing values of d = 9.0, 6.8, and 0, respectively. The left and right columns are for increasing G/Gres,0 = 0.90 and 1.05, respectively,
below and above the single-site resonant lasing threshold. All simulations have been performed by numerically integrating the Bloch–Harper–Hofstadter motion equations (4)
up to a time T = 104Γ−1.

We can induce lasing from the topological edge modes at the
boundary by making the gain in the surrounding trivial region to be
stronger than the one in the central topological region, that is, d > 1.
In this case, a region appears in the parameter space where the sys-
tem displays a monochromatic topological laser behavior [panel (g)].
Thanks to their evanescent tail overlapping with the stronger ampli-
fying surrounding region, the effective threshold of the topological
boundary modes is, in fact, pushed well below the one G/Gres,0 = 1

of the bulk modes (thick solid black line in the phase diagram),
opening a window where only these modes can lase (blue region).
In this G/Gres,0 < 1 regime, the monochromaticity of the topolaser
emission is ensured by the same mode competition effects pointed
out in Ref. 23 and reviewed in Sec. III: since only topological edge
modes experience a sufficient gain to lase and since these modes
spatially share the same active medium, steady-state lasing ends up
being concentrated in one of them only, thus making the emission
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monochromatic. A more detailed time-frequency analysis in sup-
port of this conclusion is reported in Sec. S.3 of the supplementary
material.

In order to better quantify the efficiency of our combined
mode-selection scheme, we have investigated the constraints on the
gain linewidth γ in order to have pure topolaser operation into the
edge state. Quite interestingly, topolasing turns out to be robust as
long as the effective gain experienced by the bulk bands in the triv-
ial region remains below threshold. As it can be inferred from the
discussion in Sec. S.5 of the supplementary material, for sufficiently
large Δtrivial, the upper bound on γ involves only γ/Δtrivial. In par-
ticular, no restriction applies to the ratio of γ to the topological
gap width. In the experiment of Ref. 17, the analog of Δtrivial is way
larger than the topological bandgap, which releases any constraint
on the gain bandwidth compared to the topological gap and allows
the latter to be arbitrarily small.

Note that this spectral structure is characteristic of the photonic
crystal platform of Ref. 17 and is different from the typical one of the
ring-resonator-based platforms considered in Ref. 18. Here, addi-
tional copies of the band structure are, in fact, present with a spacing
set by the (relatively small) free spectral range of the single ring res-
onators and our mode-selection mechanism is not applicable in a
straightforward way.

The situation is of course very different in the G/Gres,0 > 1 case,
when also the bulk modes of the topological region go above thresh-
old. Since these modes have a reduced spatial overlap among them
and with the edge mode, mode competition is no longer effective
in ensuring a monochromatic emission and the latter acquires a
complex multi-mode character (blue-to-white-to-red region). Still,
thanks to the stronger gain of the surrounding trivial region, the
intensity of boundary mode lasing can remain significantly stronger
than the one of the central bulk modes even at values of G above the
single-cavity lasing threshold [panel (h)].

For even higher values of the surrounding density d above the
dashed-dotted black line in the phase diagram, we reach a point
where the spectral selection is no longer sufficient to suppress bulk
lasing in the surrounding region and topological lasing is no longer
possible. In this phase (yellow area in the phase diagram), the much
stronger gain of the surrounding region makes the laser emission to
be concentrated in this region [panels (e) and (f)].

A quantitative analytical discussion of the location of the
transition lines in the phase diagram is given in Sec. S.5 of the
supplementary material. As expected, the area of the topological las-
ing region in parameter space can be increased by either increasing
the trivial bandgap in the surrounding region or using a narrower
gain spectrum. This trend is confirmed by the additional numerical
simulations with different values of the parameters that are shown
in Sec. S.4 of the supplementary material.

V. DISCUSSION
In Secs. II–IV, we have concentrated our attention on a

Harper–Hofstadter model that provides a relatively straightforward
insight into the basic effects, but our conclusions extend to any com-
bination of lattices with suitable spectral and topological properties.
In particular, we expect that our physical conclusions extend even
outside the tight-binding approximation that has been made in all
theoretical studies of topological lasing so far.

As a most intriguing example, the results of our calculations
are compatible with some key observations of the pioneering exper-
iment in Ref. 17 that, to the best of our knowledge, remain so far
unexplained. In particular, topological lasing was observed in this
experiment without the need to concentrate gain along the edge sep-
arating the topological and trivial regions as it was instead the case in
other experiments.18,19 A key difference between the devices used in
these works consists in that the topological system used in Ref. 18 is
surrounded by empty space, while in Ref. 17 the central topological
system is surrounded by a topologically trivial region where the field
can penetrate with a significant evanescent tail. Most importantly
for our purposes, the outer region displays a larger filling factor of
the unit cell (compare Figs. 2A and 2B in Ref. 17). For an equal
level of optical pumping, we can thus reasonably expect the gain to
be stronger in the outer region, which corresponds to d > 1 in our
model. As a result, the overlap of the edge state with this stronger
amplifying region favors topological lasing with respect to bulk las-
ing in the central region. At the same time, the much wider extension
of the trivial photonic bandgap of the outer region forbids laser oper-
ation in the outer region thanks to the natural frequency dependence
of gain in the used semiconductor quantum well material.

While these arguments provide a suggestive interpretation of
experimental observations, they are of course not yet completely
sufficient to rule out other possible explanations. For instance, in
analogy to the arguments put forward in Ref. 20 for a different geom-
etry, another potentially relevant mechanism for stabilizing the edge
mode lasing could originate from the weaker losses of the edge mode
compared to the ones of bulk modes.36 In the specific system of
Ref. 17, reduced radiative losses may, in fact, originate from the
evanescent tail in the outer trivial region where bulk modes in the
vicinity of the trivial gap are below the light cone. In our model
theory, the reduced radiative losses of the trivial region could be
explicitly included via a reduced Γ of the outer sites, but we expect
their effect to be similar to the one of the increased gain Gtrivial con-
sidered in our calculations. On this basis, we are confident that the
qualitative conclusions of our theory directly apply to the experi-
ment. However, a firm and definitive unraveling of these questions
requires accurate experimental measurements and comprehensive
microscopic calculations of the band structure and of the radiative
and non-radiative decay rates of the different modes,36 which go
beyond our work.

As a final point, it is worth briefly mentioning some straight-
forward experiments that may serve to shed light on the possible
interpretations of the experimental observations even in the absence
of a direct measurement of the Q factor of the different modes. In
the IR spectral region of the experiment, magnetic effects are quite
weak as signaled by the smallness of the topological gap. This implies
that the magnetic field is crucial to induce the topological edge state
but has a minor effect on the bulk regions. As a result, according to
our theory in the absence of any magnetic field, no laser operation
should be observed up to powers well above the topological laser
threshold. Some evidence in this direction is found by comparing
Figs. 3(b) and 3(c) of Ref. 17. Further experimental insight could be
obtained by keeping the magnetic field on and ramping up the pump
intensity well above the topological laser threshold. According to our
model, as discussed in Sec. IV, going up in gain strength G should
move the system from the topological lasing region indicated in blue
into the ones of multimode bulk lasing indicated in red/yellow. In
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particular, we expect that the threshold for bulk lasing at high gain
strengths should be almost insensitive to the applied magnetic field.

VI. CONCLUSIONS
In this work, we have developed a general semiclassical the-

ory of topological laser operation that is able to include the peculiar
structure of the photonic modes of the underlying topological lattice
and the frequency dependence of a realistic gain material. As a spe-
cific example of application of our theory, we have investigated the
lasing threshold in a configuration that displays a subtle interplay
between the spatial overlap of the modes with the gain medium and
the spectral position and width of the frequency gaps in the different
regions. Based on our theory, we propose an interpretation of the
recent experiments in Ref. 17, where stable topolaser emission was
observed despite the gain being distributed across the whole pho-
tonic crystal structure and not localized on the topological edge as in
Ref. 18.

A natural next step will be to include our theory of frequency-
dependent gain into the Bogoliubov description of collective excita-
tions around a topologically lasing state35 so as to characterize the
stability of realistic models of topological laser operation in the dif-
ferent regimes of gain parameters. This will be of great interest as
a new tool to tame all those instability mechanisms that may hin-
der a clean and efficient single-mode topological laser emission in
practical semiconductor devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for full derivations of the the-
oretical models, additional simulations at different gain widths, and
an extended discussion on the topological lasing features.
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